
Master CSCI 2005–2006

Projet en langage C++

Implémentation de l’algorithme A.E.S

Sebastien.Varrette@imag.fr

1 Objectifs

L’objectif de ce projet est la réalisation d’une implémentation du cryptosystème
à clé secrète AES en C++.

Un cryptosystème permet à deux protagonistes, appelés traditionnellement Alice
et Bob, de communiquer ensemble sur un canal peu sûr lorsqu’un opposant,
Oscar, souhaite espionner cette conversation. Evidemment, Oscar ne doit pas
comprendre les informations qui sont échangées.

OSCAR

ALICE
num de compte
code secret....

confidentielles
Informations

message M

BOBCanal de communication

Fig. 1 – Les protagonistes d’un cryptosystème

Pour un cryptosystème, on définit les expressions suivantes :

– Texte clair : information qu’Alice souhaite transmettre à Bob (Ex : texte
en français, donnée numérique etc...)

– Chiffrement : processus de transformation d’un message M de telle ma-
nière à le rendre incompréhensible. Ce processus est basé sur une fonction de

chiffrement E et permet de génèrer ainsi un message chiffré C = E(M)
– Déchiffrement : processus de reconstruction du message clair à partir du

message chiffré, basé sur une fonction de déchiffrement D.
On a donc D(C) = D(E(M)) = M (D et E sont injectives).

F

Ke

Kd

E CM

Texte clair

Coucou! zgk&$qw

Texte chiffré

Fig. 2 – Illustration du chiffrement d’un texte clair

En pratique : E et D sont paramétrées par des clefs Ke et Kd (comme illustré

1

dans la figure 2) et sont liées par l’équation 1 :
{

EKe
(M) = C

DKd
(C) = M

(1)

Le lien qui unit Ke et Kd définit deux grandes catégories de systèmes crypto-
graphiques :

1. les systemes à clef secrète (ou symétriques) (Ke = Kd = K). C’est le cas
du système A.E.S.

2. les systèmes à clef publique (ou asymétriques) (Ke 6= Kd) comme par
exemple le système R.S.A.

Rijndael est le chiffrement à clef privée qui a été retenu par le NIST (National
Institute of Standards and Technology) comme le nouveau standard américain
de chiffrement AES : Advanced Encryption Standard [DR01] visant à remplacer
DES (Data Encryption Standard).
C’est un code par blocs encodant 128 bits avec des clefs de 128, 192 ou 256 bits.

2 Conventions

2.1 Entrées et Sorties

Les entrées et les sorties d’AES consistent en des séquences de 128 bits. La clé
secrète de chiffrement est une suite de 128, 192 ou 256 bits.

2.2 Interprétation des octets et représentation matricielle

Dans AES, les octets correspondent à des séquences de 8 bits interprétées comme
des éléments du corps fini à 256 éléments F256 (voir §3). Ensuite, tout flux
d’octets est organisé sous forme matricielle, selon un modèle illustré dans la
figure 3. Cette matrice aura nécessairement 4 lignes et un nombre de colonnes

Représentation
matricielle

a1 a2 a3 a4 a5 a6 a7 a8 a9 a11 a12 a13 a14 a15

128 bits = 16 octets

a0

a0

a1

a2

a3

a4

a5

a6

a8

a9

a10

a10

a11

a12

a13

a14

a15a7

Flux de données
8 bits

4 lignes

N colonnes

Fig. 3 – Représentation matricielle d’un flux de 16 octets

fonction de la taille du flux, définissant ainsi une taille de bloc N . Par exemple,

2

pour les flux d’entrée/sortie qui, dans AES, correspondent à des séquences de
16 octets, on obtiendra des matrices de 4 lignes et Nb = 4 colonnes. De même,
– la matrice associée à une clé de 128 bits aura 4 lignes et Nk = 4 colonnes ;
– avec une clé de 192 bits, la matrice aura 4 lignes et Nk = 6 colonnes ;
– pour une clé de 256 bits, la matrice aura 4 lignes et Nk = 8 colonnes ;
Dans la suite, on notera State l’écriture matricielle du flux d’entrée/sortie sur
lequel opère chaque étape de l’algorithme.

3 Préliminaires mathématiques : le corps F256

3.1 Rappels : construction d’un corps fini à p
m éléments

On considère d’abord le corps fini à p éléments Fp (ou p est premier).
Comme p est premier, Fp = Z/pZ. Soit m un entier positif. On souhaite
construire le corps Fpm possédant pm éléments. Pour cela, on considère g un
polynôme unitaire irréductible de Fp[X] de degré m. Alors on peut montrer que
Fpm est isomorphe à Fp[X]/g(X). Autrement dit, tout élément de Fpm peut être
vu comme un polynôme de Fp[X] (i.e dont les coefficients sont dans Fp = Z/pZ)
de degré inférieur à m :

Fpm ≃

{

m−1
∑

i=0

aiX
i, ai ∈ Fp

}

=







∑

i≥0

aiX
i mod g(X), ai ∈ Fp







3.2 Applications à la constructions de F256

Dans ce cas, p = 2 et m = 8. Il convient donc de choisir un polynôme unitaire
irréductible de degré 8. Plusieurs choix sont possibles.
Ainsi, les encodeurs/décodeurs CIRC utilisés pour les CD audio utilisent le
polynôme g(X) = X8 + X7 + X2 + X + 1.
Pour AES, le polynôme utilisé est : g(X) = X8 + X4 + X3 + X + 1.
On aura donc :

F256 ≃

{

7
∑

i=0

aiX
i, ai ∈ {0, 1}

}

=







∑

i≥0

aiX
i mod g(X), ai ∈ {0, 1}







En pratique, on représentera le polynome a7X
7 + . . . + a1X + a0 par l’octet

a7a6 . . . a1a0. On dira qu’on utilise une notation polynomiale des éléments de
F256.

3.3 Addition dans F256

L’addition de deux éléments de F2 = Z/2Z correspond à l’opération XOR ⊕.
Ainsi, l’addition de deux éléments a et b de F256 correspond à l’addition de deux
polynômes à coefficients dans F2 = Z/2Z :

a(x) = a7x
7 + . . . + a1x + a0

b(x) = b7x
7 + . . . + b1x + a0

=⇒ a(x) + b(x) = (a7 ⊕ b7)x
7 + . . . + (a1 ⊕ b1)x + (a0 ⊕ b0)

3

Exemple :

(x6 + x4 + x2 + x + 1) + (x7 + x + 1) = x7 + x6 + x4 + x2 (notation polynomiale)
{01010111} + {10000011} = {11010100} (notation binaire)
{57} + {83} = {d4} (notation hexadécimale)

Remarque En notation hexadécimale, le polynôme g(X) s’écrit 0x11B.

3.4 Multiplication dans F256

En notation polynômiale, la multiplication dans F256 correspond à la multipli-
cation de deux polynômes suivie d’une réduction modulo g(x). Exemple :

(x6 + x4 + x2 + x + 1) × (x7 + x + 1) = x13 + x11 + x9 + x8 + x7 +

x7 + x5 + x3 + x2 + x +

x6 + x4 + x2 + x + 1

= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

Et

(x13+x11+x9+x8+x6+x5+x4+x3+1) mod (x8+x4+x3+x+1) = x7+x6+1.

La réduction modulo g(x) assure que le résultat reste un polynôme binaire de
degré inférieur à 8 qui peut donc être représenté par un octet. Dans l’exemple
précédent, on a obtenu : {57} × {83} = {C1}.

En pratique, pour réaliser cette multiplication, on dispose de deux méthodes,
expliquées dans les sections suivantes.

3.4.1 Méthode ”lente” : multiplication par xi.

Cette méthode consiste à réaliser effectivement la multiplication polynomiale.
Soit a ∈ F256. En notation polynomiale, a(x) = a7x

7 + . . . + a1x + a0

Ainsi, x.a(x) = a7x
8 + . . . + a1x

2 + a0x. Il reste à effectuer la réduction modulo
g(x). Deux cas sont possibles :

– Soit a7 = 0, on obtient directement une expression réduite et donc x.a(x) =
a6x

7 + . . . + a1x
2 + a0x.

– Soit a7 = 1 et dans ce cas : x.a(x) = x8 + . . . + a1x
2 + a0x. En outre,

g(x) = x8 +x4 +x3 +x+1 ≡ 0 mod g(x) =⇒ x8 ≡ x4 +x3 +x+1 mod g(x)
donc

x8 + a6x
7 + . . . + a1x

2 + a0x = (a6x
7 + . . . + a1x

2 + a0x)⊕ (x4 + x3 + x + 1)

En notation polynomiale, cette opération consiste donc à un décalage à gauche
suivi éventuellement d’un XOR bits-à-bits avec {1B}.

Soit xtime la fonction qui réalise l’opération x × a(x) mod g(x). xtime peut
être utilisée pour définir la fonction xi_time qui réalise l’opération xi × a(x)
mod g(x). Enfin, à partir de cette dernière fonction, il est possible de réaliser
la multiplication complète de deux éléments de F256.

4

3.4.2 Méthode ”rapide” à partir d’une représentation exponentielle.

Soit w(x) un générateur de Fp[X]/g(X) : dans ce cas, tout élément non nul de
F256 se représente de manière unique par w(x)i mod g(x), 0 ≤ i < 255.

On obtient ainsi une autre écriture pour F256 :

F256 ≃ {0} ∪
{

w(x)i mod g(x)
}

0≤i<255

Avec cette représentation (dite cyclique ou exponentielle), la multiplication de
deux éléments a et b non nuls est aisée :

a(x) = w(x)i (2)

b(x) = w(x)j (3)

a(x) × b(x) = w(x)i+j mod 255 (4)

L’idée consiste alors a passer par cette représentation pour effectuer la multi-
plication. On utilise pour cela des tables de correspondance entre les éléments
a(x) de F256 et l’exposant i correspondant à sa représentation exponentielle.

A noter que la valeur de w(x) dépend de g(x).

Le tableau suivant fournit un générateur simple pour quelques polynômes irré-
ductibles g(x).

Polynome irréductible Rep. hexa générateur Rep. hexa Application

x8 + x7 + x2 + x + 1 0x187 w(x) = x 0x02 Codes CIRC

x8 + x4 + x3 + x + 1 0x11B w(x) = x + 1 0x03 AES

Tab. 1 – Quelques exemples de générateurs pour Fp[X]/g(X)

Ainsi, à partir de la fonction de multiplication lente, on génère une table

ExpoToPoly de 256 entrées telle que ExpoToPoly[k] donne la representation
polynomiale de w(x)k mod g(x). (Par convention, on représentera l’élément
0 par w(x)255 bien que mathematiquement, w255 = 1. La table PolyToExpo

correspond à la table inverse. Ces tables sont fournie en annexe B.

On utilise ces tables pour effectuer efficacement la multiplication de deux élé-
ments a et b à partir de la relation (4).

4 Description de l’algorithme de chiffrement A.E.S

Pour être tout à fait exact, l’algorithme AES n’est pas exactement celui de Ri-
jndael dans la mesure ou ce dernier supporte des tailles de blocs plus nombreux
qu’AES. AES fixe la taille de blocs à 128 bits - représenté par Nb = 4.
Nb reflète le nombre de mots de 32 bits dans un bloc (c’est aussi le nombre de
colonnes nécessaire pour une représentation matricielle) .

AES utilise des clés de 128, 192 ou 256 bits. La longueur de clé est carac-
térisée de façon similaire par Nk = 4,6 ou 8.

Comme DES, AES exécute une séquence de rondes qui seront détaillés dans la
suite. On note Nr le nombre de rondes qui doivent être effectuées. Ce nombre

5

Nk Nb Nr

AES-128 4 4 10

AES-192 6 4 12

AES-256 8 4 14

Tab. 2 – Détail des configurations possibles

dépend des valeurs de Nb et de Nk. Les différentes configurations possibles sont
détaillés dans le tableau 2.

Comme on l’a vu en §2.2, AES opère sur une matrice 4×Nb d’éléments de F256,
notée State. Le chiffrement AES consiste en une addition initiale de clé, notée
AddRoundKey, suivie par Nr − 1 rondes, chacune constitué de quatre étapes :

1. SubBytes : il s’agit d’une substitution non-linéaire lors de laquelle chaque
octet est remplacé par un autre octet choisi dans une table particulière
une Boite-S).

2. ShiftRows est une étape de transposition ou chaque éléments de la ma-
trice est décalée cycliquement à gauche d’un certain nombre de colonnes.

3. MixColumns effectue une produit matriciel en opérant sur chaque colonnes
(vu alors comme un vecteur) de la matrice.

4. AddRoundKey qui combine par addition chaque octet avec l’octet corres-
pondant dans une clé de ronde obtenue par diversification de la clé de
chiffrement.

Enfin, une ronde finale FinalRound est appliquée (elle correspond à une ronde
dans laquelle l’étape MixColumns est omise).

La clé de ronde pour l’étape i sera notée RoundKeys[i], et RoundKeys[0] ré-
férencera un des paramètres de l’addition initiale de clé. La dérivation de la clé
de chiffrement K dans le tableau RoundKeys[] est notée KeyExpansion et sera
détaillée au §4.5.

Le chiffrement AES peut se décrire de façon formelle de la façon suivante :

AES_Encrypt(State, K) {

KeyExpansion(K, RoundKeys);

/* Addition initiale */

AddRoundKey(State, RoundKeys[O]);

/* Les Nr-1 rondes */

for (r=1; i<Nr; r++) {

SubBytes(State);

ShiftRows(State);

MixColumns(State);

AddRoundKey(State, RoundKeys[r]);

}

/* FinalRound */

SubBytes(State);

ShiftRows(State);

AddRoundKey(State, RoundKeys[Nr]);

}

6

Les sections suivantes détaillent chaque étape.

4.1 Etape SubBytes

L’étape SubBytes correspond à la seule transformation non-linéaire de l’algo-
rithme. Dans cette étape, chaque élément de la matrice State est permuté selon
une table de substitution inversible notée SBox. Cette table est fournie en an-
nexe C. La figure 4 illustre par exemple la transformation de l’élément a2,2 en
l’élément b2,2 = S[a2,2].

a0,0 a0,1 a0,3a0,2

a2,2

a a a a

aaa

a a a

1,0

2,0

3,0

1,1

2,1

3,1

1,2

3,2

1,3

2,3

a3,3

a2,2

SubBytes
1,0

2,0

3,0

1,1

2,1

3,1

1,2

2,2

3,2

1,3

2,3

3,3

0,0 0,1 0,2 0,3b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b
2,2b

S

Fig. 4 – Etape SubBytes

Remarque : La table SBox dérive de la fontion inverse t : a −→ a−1 sur F256.
Cette fonction est connue pour ses bonnes propriétés de non-linéarité. Afin
d’éviter des attaques basées sur de simples propriétés algébriques, la boite-S est
construite en combinant cette fonction inverse avec une transformation affine
inversible f . On a donc :

SBox[a] = f (t(a)) ,∀a ∈ F256

Les concepteurs ont également fait en sorte que cette Boite-S n’admette pas de
point fixe ni de point fixe opposé :

SBox[a] + a 6= 00, ∀a ∈ F256

SBox[a] + a 6= FF, ∀a ∈ F256

Enfin, la fonction affine f est définie par :

b = f(a) ⇐⇒

























b7

b6

b5

b4

b3

b2

b1

b0

























=

























1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

























×

























a7

a6

a5

a4

a3

a2

a1

a0

























+

























0
1
1
0
0
0
1
1

























Opération inverse L’opération inverse de SubBytes est notée InvSubBytes

et consiste à effectuer la même manipulation mais à partir de la Boite-S inverse
S−1 notée InvSBox. Cette table est également fournie en annexe C.

7

Remarque : mathématiquement, comme la fonction t est son propre inverse, on
a :

SBox−1[a] = g−1
(

f−1(a)
)

= g
(

f−1(a)
)

,∀a ∈ F256

La fonction affine inverse f−1 est définie par :

b = f−1(a) ⇐⇒

























b7

b6

b5

b4

b3

b2

b1

b0

























=

























0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0

























×

























a7

a6

a5

a4

a3

a2

a1

a0

























+

























0
0
0
0
0
1
0
1

























4.2 L’étape Shiftrows

L’étape Shiftrows opère sur les lignes de la matrice State et effectue pour
chaque élément d’une ligne un décalage cyclique de n éléments vers la gauche.
L’offset n de décalage dépend de la ligne considérée. La ligne i est décalé de
Ci éléments, si bien que l’élément en position j de la ligne i est déplacé en
position (j − Ci) mod Nb. Les valeurs de Ci dépendent de la valeur de Nb et
sont détaillée dans la table 3.

Nb C0 C1 C2 C3

4 0 1 2 3

5 0 1 2 3

6 0 1 2 3

7 0 1 2 4

8 0 1 3 4

Tab. 3 – Shiftrows : décalage des lignes en fonction de Nb dans Rijndael

Evidemment, cette table n’est fournit qu’a titre indicatif dans la mesure où AES
fixe la taille de bloc à Nb = 4. L’étape Shiftrows est illustrée dans la figure 5.

a b c d

e f g h

i j l

m n o p

k

a b c d

f eg h

k l i j

onmp

ShiftRows

−3

−2

Décalage:

0

−1

Fig. 5 – Opération Shiftrows dans AES

Opération inverse L’opération inverse de Shiftrows est notée InvShiftrows
et consiste à effectuer au niveau le la ligne i un décalage cyclique à droite de Ci

éléments.

8

4.3 MixColumns

La transformation MixColumns opère sur les colonnes c de la matrice State en
les traitant comme un polynôme a(x) de degré 3 à coefficients dans F256.

L’étape MixColumns consiste alors a effectuer pour chaque colonne une multi-
plication par un polynôme c(x) fixé suivi d’une réduction modulo le polynôme
x4 + 1. Dans MixColumns, on réalise donc l’opération :

(03x3 + x2 + x + 02) × a(x) mod (x4 + 1)

Matriciellement, cette opération s’ecrit :

b(x) = c(x) × a(x) mod (x4 + 1) ⇐⇒









b0

b1

b2

b3









=









02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02









×









a0

a1

a2

a3









La figure 6 illustre cette étape.

a0,0 a0,1 a0,3a0,2

a2,2

a a a a

aaa

a a a

1,0

2,0

3,0

1,1

2,1

3,1

1,2

3,2

1,3

2,3

a3,3

1,0

2,0

3,0

1,1

2,1

3,1

1,2

2,2

3,2

1,3

2,3

3,3

0,0 0,1 0,2 0,3b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

0,1
a

a
3,1

a
2,1

a
1,1

0,1

3,1

2,1

1,1

b

b

b

b

02
01
01
03

03
02
01
01

01
03
02
01

01
01
03
02

=

MixColumns

Fig. 6 – Opération MixColumns

Opération inverse L’opération inverse de MixColumns est notée InvMixColumns
et consiste à effectuer la même opération mais à partir d’une multiplication par
le polynôme d(x) = c−1(x) donné par la relation :

(03x3 + x2 + x + 02) × d(x) ≡ 01 mod (x4 + 1)

On obtient ainsi :

d(x) = 0Bx3 + 0Dx2 + 09x + 0E

Matriciellement, cette étape revient a effectuer le calcul suivant :

b(x) = d(x) × a(x) mod (x4 + 1) ⇐⇒









b0

b1

b2

b3









=









0E 0B 0D 09

09 0E 0B 0D

0D 09 0E 0B

0B 0D 09 0E









×









a0

a1

a2

a3









9

4.4 AddRoundKey

Lors de l’étape AddRoundKey, la matrice State est modifiée en l’additionnant
(au sens de l’addition termes à termes dans F256) avec une clé de ronde. Cette
étape est illustrée dans la figure 7.

a0,0 a0,1 a0,3a0,2

a2,2

a a a a

aaa

a a a

1,0

2,0

3,0

1,1

2,1

3,1

1,2

3,2

1,3

2,3

a3,3

a2,2

2,2

1,0

2,0

3,0

1,1

2,1

3,1

1,2

3,2

1,3

2,3

3,3

0,0 0,1 0,2 0,3k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

2,2k

AddRoundKey
1,0

2,0

3,0

1,1

2,1

3,1

1,2

2,2

3,2

1,3

2,3

3,3

0,0 0,1 0,2 0,3b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b
2,2b

+

Fig. 7 – Opération AddRoundKey

4.5 Détails de la diversification de la clef dans AES

Cette étape, noté KeyExpansion, permet de diversifier la clé de chiffrement K

(de 4Nk octets) dans une clé étendue W de 4Nb(Nr + 1) octets. On disposera
ainsi de Nr + 1 clés de rondes (chacune de 4Nb octets - voir figure 8).

KeyExpansion

Nk

K

4

4

Nb

W

W[0]

W[1]

W[Nr]

Fig. 8 – Opération KeyExpansion

Les tableaux K et W peuvent être vus comme une succession de colonnes chacunes
constituées de 4 octets, comme l’illustre la figure 9. Dans la suite, on notera
c[i] (resp. k[i]) la (i + 1)ème colonne de W (resp. de K).

10

W

(Nr+1)*Nb colonnes

W[0] W[Nr]

c[6] : 7ème colonne de W

Fig. 9 – Vision de W comme une succession de colonnes.

L’algorithme utilisé pour la diversification de clé diffère légèrement selon que
Nk ≤ 6 ou Nk > 6. Dans tous les cas, les Nk premières colonnes de K sont reco-
piées sans modifications aux Nk premières colonnes de W. Les colonnes suivantes
sont définies récursivement à partir des colonnes précédentes. KeyExpansion y
utilise notamment les éléments suivants :

– SubWord qui est une fonction prenant en entrée un mot de 4 octets et applique
la boite-S Sbox sur chacun des octets.

– La fonction RotWord qui prend en entrée un mot de 4 octets a = [a0, a1, a2, a3]
et effectue une permutation circulaire de façon à renvoyer le mot [a1, a2, a3, a0].

– Le tableau de constantes de rondes Rcon[i], indépendant de Nk, qui est
défini récursivement par :

Rcon[i] = [xi−1, 00, 00, 00],∀i ≥ 1

On pourra utiliser la fonction xi_time (définie au §3.4.1) pour calculer la
valeur de Rcon[i].

La définition formelle en pseudo-code C de l’étape KeyExpansion est alors la
suivante :

KeyExpansion(K, W) {

/* Recopie directe des Nk premiere colonnes */

for (i=0; i<Nk; i++) c[i] = k[i];

for (i=Nk; i<Nb*(Nr+1); i++) {

tmp = c[i-1];

if (i mod Nk == 0)

tmp = SubWord(RotWord(tmp)) + Rcon[i/Nk];

else if ((Nk > 6) && (i mod Nk == 4)) // Cas Nk > 6

tmp = SubWord(tmp);

c[i] = c[i-Nk] + tmp;

}

}

L’annexe A.1 fournit des exemples de diversification de clés.

4.6 Déchiffrement dans AES

La routine de chiffrement peut être inversée et réordonnée pour produire un al-
gorithme de déchiffrement utilisant les transformations InvSubBytes, InvShiftRows,
InvMixColumns, et AddRoundKey. Une modélisation formelle de l’algorithme de
déchiffrement en pseudo-C pourrait être :

11

AES_Decrypt(State, K) {

KeyExpansion(K, RoundKeys);

/* Addition initiale */

AddRoundKey(State, RoundKeys[Nr]);

/* Les Nr-1 rondes */

for (r=Nr-1; i>0; r--) {

InvShiftRows(State);

InvSubBytes(State);

AddRoundKey(State, RoundKeys[r]);

InvMixColumns(State);

}

/* FinalRound */

InvShiftRows(Out);

InvSubBytes(Out);

AddRoundKey(Out,RoundKeys[0]);

}

Dans cette version du déchiffrement, la séquence des transformations diffère de
celle du chiffrement (voir §4), le traitement de la clé restant inchangé.

Certaines propriétés du Rijndael permettent d’implémenter une routine de dé-
chiffrement équivalente qui respecte la séquence de transformations de la rou-
tine AES_Encrypt, la structure de celle-ci étant la plus efficace. Cette version
équivalente n’est pas demandée ici.

5 Cahier des charges de l’exécutable à produire

La compilation des sources produites devra fournir un exécutable aes.

On se limitera au chiffrement/déchiffrement d’un bloc de 128 bits. Les groupes
qui le souhaitent pourront étendre leur système au chiffrement/déchiffrement
de châınes de longueur quelconque, voir même d’un fichier1.

Cet exécutable devra supporter au minimum les options suivantes :

-h : affichage de l’aide.

-k <key> : utilisation de la cle <key> donnee sous forme hexadecimale sur
128 bits. Valeur par defaut : 2b7e151628aed2a6abf7158809cf4f3c

-t <text> : le texte a chiffrer sous forme d’un bloc de 128 bits ecrit en hexa-
décimal. Valeur par defaut : 00112233445566778899aabbccddeeff

-d : déchiffrement du texte <text>.

-b : calcule le débit (bit rate) de chiffrement (en Ko/s) .

-v : verbose, affiche des informations supplementaires.

Libre à vous également d’implémenter d’autres options (pour permettre par
exemple de supporter tous les modes de chiffrements (AES-128, AES-192, AES-256)).
Voici par exemple le résultat de l’appel de cet exécutable sur quelques options :

1Il se posera alors un problème de convention de padding

12

[13:10:36] seb@falkor ENSEIGNEMENTS/TD/AES_C++>./aes -h

NAME

aes - Advanced Encryption Standard (Mode AES-128)

SYNOPSIS

aes [-h] [-k key] [-t text] [-v] [-d] [-x]

DESCRIPTION

Encrypt a clear Text using A.E.S

-h : print help and exit

-k : value of the private key (hexadecimal 128 bits format)

Default value : 0x2b7e151628aed2a6abf7158809cf4f3c

-t : text to (de/en)crypt (hexadecimal 128 bits format)

Default value : 0x00112233445566778899aabbccddeeff

-v : verbose mode

-d : decryption mode

-b : compute the bit rate when encrypting

AUTHOR

Sebastien Varrette <Sebastien.Varrette@imag.fr>

REPORTING BUGS

Report bugs to <Sebastien.Varrette@imag.fr>

COPYRIGHT

This is free software; see the source for copying conditions.

There is NO warranty; not even for MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE.

SEE ALSO

Federal Information Processing Standards Publication 197

"Advanced Encryption Standard (AES)" - nov. 2001

http://csrc.nist.gov/encryption/aes/rijndael/

[13:15:17] seb@falkor ENSEIGNEMENTS/TD/AES_C++>./aes

00112233445566778899aabbccddeeff --> 8df4e9aac5c7573a27d8d055d6e4d64b

[13:16:46] seb@falkor ENSEIGNEMENTS/TD/AES_C++>./aes -b

Debit : 80.000 Ko/s

[13:16:51] seb@falkor ENSEIGNEMENTS/TD/AES_C++>./aes -d \

-t 8df4e9aac5c7573a27d8d055d6e4d64b

8df4e9aac5c7573a27d8d055d6e4d64b --> 00112233445566778899aabbccddeeff

Pour vous aider, une archive initiale est disponible à l’adresse http://www-id.

imag.fr/~svarrett/enseignements/2005-2006/Init_src_projetAES.tgz

Cette archive contient notamment :

– un fichier de configuration Makefile générique qui devrait compiler votre
projet directement par la commande make.

– un répertoire Include/ qui contiendra vos fichiers de header (.h).
– un répertoire Ressources/ qui contient un binaire qui devrait vous aider à

tester votre propre exécutable. Attention, ce binaire est fourni sans aucune
garantie !

– Enfin, si vous prenez le temps de commenter vos sources selon les conventions

13

de Doxygen2, la commande "make doc" devrait générer automatiquement la
documentation de vos sources (dans le répertoire Doc/). Cela pourra vous
aider lors de la rédaction du rapport.

6 Consignes d’envoi

Un rapport avec les sources de votre projet devra m’être remis par mail
(Sebastien.Varrette@imag.fr) ainsi qu’à Roland Gillard
(Roland.Gillard@ujf-grenoble.fr) sous forme d’un fichier unique compressé
(format AES_src_<Nom1>_<Nom2>.tgz) au plus tard le lundi 4 décembre.

2http://www.doxugen.org

14

A Aide au débuggage

A.1 Diversification de la clé

Voici par exemple les clés de rondes dérivées de la clé
K=00000000000000000000000000000000

RoundKeys[00] = 00000000000000000000000000000000

RoundKeys[01] = 62636363626363636263636362636363

RoundKeys[02] = 9b9898c9f9fbfbaa9b9898c9f9fbfbaa

RoundKeys[03] = 90973450696ccffaf2f457330b0fac99

RoundKeys[04] = ee06da7b876a1581759e42b27e91ee2b

RoundKeys[05] = 7f2e2b88f8443e098dda7cbbf34b9290

RoundKeys[06] = ec614b851425758c99ff09376ab49ba7

RoundKeys[07] = 217517873550620bacaf6b3cc61bf09b

RoundKeys[08] = 0ef903333ba9613897060a04511dfa9f

RoundKeys[09] = b1d4d8e28a7db9da1d7bb3de4c664941

RoundKeys[10] = b4ef5bcb3e92e21123e951cf6f8f188e

On pourra vérifier également cette diversification sur la clé par défaut
(K=2b7e151628aed2a6abf7158809cf4f3c) :

RoundKeys[00] = 2b7e151628aed2a6abf7158809cf4f3c

RoundKeys[01] = a0fafe1788542cb123a339392a6c7605

RoundKeys[02] = f2c295f27a96b9435935807a7359f67f

RoundKeys[03] = 3d80477d4716fe3e1e237e446d7a883b

RoundKeys[04] = ef44a541a8525b7fb671253bdb0bad00

RoundKeys[05] = d4d1c6f87c839d87caf2b8bc11f915bc

RoundKeys[06] = 6d88a37a110b3efddbf98641ca0093fd

RoundKeys[07] = 4e54f70e5f5fc9f384a64fb24ea6dc4f

RoundKeys[08] = ead27321b58dbad2312bf5607f8d292f

RoundKeys[09] = ac7766f319fadc2128d12941575c006e

RoundKeys[10] = d014f9a8c9ee2589e13f0cc8b6630ca6

15

A.2 Chiffrement AES-128

Voici le détail des différentes étapes qui composent le chiffrement par AES du
texte T = 00112233445566778899aabbccddeeff

avec la clé K = 2b7e151628aed2a6abf7158809cf4f3c.

ENCRYPT - Mode AES-128, rounds r from 0 à 10

Legend :

input : cipher input

start : state at start of round r

s_box : state after SBox substitution (SubBytes)

s_row : state after ShiftRows

mixcol : state after MixColumn

k_sch : key schedule value for round r

output : cipher output

PLAINTEXT : 00112233445566778899aabbccddeeff

KEY : 2b7e151628aed2a6abf7158809cf4f3c

R[00].input 00112233445566778899aabbccddeeff

R[00].k_sch 2b7e151628aed2a6abf7158809cf4f3c

** Start rounds **

R[01].start 2b6f37256cfbb4d1236ebf33c512a1c3

R[01].s_box f1a89a3f500f8d3e269f08c3a6c9322e

R[01].s_row f10f082e509f323f26c99a3ea6a88dc3

R[01].mixcol ced99c53171cea23a8248245faa25149

R[01].k_sch a0fafe1788542cb123a339392a6c7605

R[02].start 6e2362449f48c6928b87bb7cd0ce274c

R[02].s_box 9f26aa1bdb52b44f3d17ea10708bcc29

R[02].s_row 9f52ea29db17cc1b3d8baa4f7026b410

R[02].mixcol 1037795043a1629b199a28f82eeb1522

R[02].k_sch f2c295f27a96b9435935807a7359f67f

R[03].start e2f5eca23937dbd840afa8825db2e35d

R[03].s_box 98e6ce3a129ab9610979c2134c37114c

R[03].s_row 989ac24c1279113a0937ce614ce6b913

R[03].mixcol 10a6497384e9072ae44f1a200358f6ad

R[03].k_sch 3d80477d4716fe3e1e237e446d7a883b

R[04].start 2d260e0ec3fff914fa6c64646e227e96

R[04].s_box d8f7abab2e1699fa2d5043439f93f390

R[04].s_row d81643902e50f3ab2d93abfa9ff79943

R[04].mixcol 42a1e31df42b659ca50ce6a0fd998452

R[04].k_sch ef44a541a8525b7fb671253bdb0bad00

R[05].start ade5465c5c793ee3137dc39b26922952

R[05].s_box 95d95a4a4ab6b2117dff2e14f74fa500

R[05].s_row 95b62e004affa54a7d4f5a11f7d9b214

R[05].mixcol de907f3c61113a10601cb5b023876d41

R[05].k_sch d4d1c6f87c839d87caf2b8bc11f915bc

R[06].start 0a41b9c41d92a797aaee0d0c327e78fd

R[06].s_box 6783561ca44f5c88ac28d7fe23f3bc54

R[06].s_row 674fd754a428bc1cacf3568823835cfe

R[06].mixcol 9ccf61998b37cb5b932370417a24015d

16

R[06].k_sch 6d88a37a110b3efddbf98641ca0093fd

R[07].start f147c2e39a3cf5a648daf600b02492a0

R[07].s_box a1a02511b8ebe62452574263e7364fe0

R[07].s_row a1eb42e0b8574f1152362524e7a0e663

R[07].mixcol dd4af58accd642e9ff7542adabee35b2

R[07].k_sch 4e54f70e5f5fc9f384a64fb24ea6dc4f

R[08].start 931e028493898b1a7bd30d1fe548e9fd

R[08].s_box dc72775fdca73da22166d7c0d9521e54

R[08].s_row dca7d754dc661e5f215277a2d9723dc0

R[08].mixcol d2bf32a7486d67b961be6019c2ba8aa4

R[08].k_sch ead27321b58dbad2312bf5607f8d292f

R[09].start 386d4186fde0dd6b50959579bd37a38b

R[09].s_box 073c834454e1c17f532a2ab67a9a0a3d

R[09].s_row 07e12a3d542a0a44539a837f7a3cc1b6

R[09].mixcol 219df5b8985aa654ef9d5512c7ec1e04

R[09].k_sch ac7766f319fadc2128d12941575c006e

R[10].start 8dea934b81a07a75c74c7c5390b01e6a

** FinalRound **

R[10].s_box 5d87dcb30ce0da9dc62910ed60e77202

R[10].s_row 5de010020c2972b3c6e7dc9d6087daed

R[10].k_sch d014f9a8c9ee2589e13f0cc8b6630ca6

R[10].output 8df4e9aac5c7573a27d8d055d6e4d64b

00112233445566778899aabbccddeeff --> 8df4e9aac5c7573a27d8d055d6e4d64b

A.3 Autres exemples de chiffrement AES-128

– Avec la clé par défaut :
00000000000000000000000000000000 --> 7df76b0c1ab899b33e42f047b91b546f

3243f6a8885a308d313198a2e0370734 --> 3925841d02dc09fbdc118597196a0b32

– avec la clé K=00000000000000000000000000000000 :
3243f6a8885a308d313198a2e0370734 --> e527936d049f88872a4903305b975bd1

– Avec la clé K=000102030405060708090a0B0C0D0E0F

00112233445566778899aabbccddeeff --> 69c4e0d86a7b0430d8cdb78070b4c55a

A.4 Chiffrement AES-192

On utilise ici la clé

K=000102030405060708090a0B0C0D0E0F0111213141516171

avec le texte clair :

T = 00112233445566778899aabbccddeeff

ENCRYPT - Mode AES-192, rounds r from 0 à 12

Legend :

input : cipher input

start : state at start of round r

s_box : state after SBox substitution (SubBytes)

s_row : state after ShiftRows

mixcol : state after MixColumn

k_sch : key schedule value for round r

output : cipher output

17

PLAINTEXT : 00112233445566778899aabbccddeeff

KEY : 000102030405060708090a0b0c0d0e0f0111213141516171

R[00].input 00112233445566778899aabbccddeeff

R[00].k_sch 000102030405060708090a0b0c0d0e0f

** Start rounds **

R[01].start 00102030405060708090a0b0c0d0e0f0

R[01].s_box 63cab7040953d051cd60e0e7ba70e18c

R[01].s_row 6353e08c0960e104cd70b751bacad0e7

R[01].mixcol 5f72641557f5bc92f7be3b291db9f91a

R[01].k_sch 0111213141516171d0eea180d4eba787

R[02].start 5e63452416a4dde327509aa9c9525e9d

R[02].s_box 58fb6e364749c111cc53b8d3dd00585e

R[02].s_row 5849b85e47535836cc006e11ddfbc1d3

R[02].mixcol 8d4798a5153ffeaefc6f2303a5bbd1fb

R[02].k_sch dce2ad8cd0efa383d1fe82b290afe3c3

R[03].start 51a53529c5d05d2d2d91a1b135143238

R[03].s_box d10696a5a6704cd8d88132c896fa2307

R[03].s_row d1703207a68123a5d8fa96d896064cc8

R[03].mixcol 1c60cc24497f9502f04e66b4b9864b60

R[03].k_sch abff8fe07f142867a3f685eb73192668

R[04].start b79f43c4366bbd6553b8e35fca9f6d08

R[04].s_box a9db1a1c057f7a4ded6c11cf74db3c30

R[04].s_row a97f1130056c3c1ceddb1a4d74db7acf

R[04].mixcol e954a4ee9e853567e023d5772b9811b8

R[04].k_sch a2e7a4da32484719fd5f5bc3824b73a4

R[05].start 4bb30034accd727e1d7c8eb4a9d3621c

R[05].s_box b36d631891bd40f3a410198dd366aa9c

R[05].s_row b3bd199c9110aa18a46663f3d36d408d

R[05].mixcol 24658349bb4ce622693e0a0fc744b242

R[05].k_sch 21bdf64f52a4d027f04374fdc20b33e4

R[06].start 05d87506e9e83605997d7ef2054f81a6

R[06].s_box 6b619d6f1e9b056beefff3896b840c24

R[06].s_row 6b9bf3241eff0c6fee849d6b6b610589

R[06].mixcol b76c619d4580480fa62af6e6f92f80d0

R[06].k_sch de9c32e65cd741427d6ab70d2fce672a

R[07].start 69f0537b1957094ddb4041ebd6e1e7fa

R[07].s_box f98ced21d45b01e3b90983e9f6f8942d

R[07].s_row f95b832dd4099421b9f8ede3f68c01e9

R[07].mixcol aafcc8921d408db8749dbe18901f5845

R[07].k_sch df8d13d71d8620338a2bf142d6fcb000

R[08].start 7571db4500c6ad8bfeb64f5a46e3e845

R[08].s_box 9da3b96e63b4953dbb4e84be5a119b6e

R[08].s_row 9db4846e634e9b6ebb11b93d5aa395be

R[08].mixcol 0c178850e127b2acda748404611d11bf

R[08].k_sch ab96070d845860275bd573f0465353c3

R[09].start a7818f5d657fd28b81a1f7f4274e427c

R[09].s_box 5c0c734c4dd2b53d0c3268bfcc2f2c10

R[09].s_row 5cd268104d322c4c0c2f733dcc0cb5bf

R[09].mixcol ad4b6e7eac11f35127fa82329daf6b93

R[09].k_sch 47c6df18913a6f183aac6815bef40832

18

R[10].start ea8db1663d2b9c491d56ea27235b63a1

R[10].s_box 875dc83327f1de3ba4b187cc2639fb32

R[10].s_row 87f1873227b1fb33a439c83b265ddecc

R[10].mixcol a8de35804e7b2e45ebae5b70b929936a

R[10].k_sch e5217bc2a372280147f2a312d6c8cc0a

R[11].start 4dff4e42ed090644ac5cf8626fe15f60

R[11].s_box e3162f2c55016f1b914a41aaa8f8cfd0

R[11].s_row e30141d0554acf2c91f82f1ba8166faa

R[11].mixcol 4ff20bc597a7ee221e101a49b49f85d5

R[11].k_sch ec64a41f5290ac2db7b1d7ef14c3ffee

R[12].start a396afdac537420fa9a1cda6a05c7a3b

** FinalRound **

R[12].s_box 0a907957a69a2c76d332bd24e04adae2

R[12].s_row 0a9abde2a632da57d34a7976e0902c24

R[12].k_sch e9e48be83f2c47e2d348e3fd81d84fd0

R[12].output e37e360a991e9db500029a8b614863f4

00112233445566778899aabbccddeeff --> e37e360a991e9db500029a8b614863f4

A.5 Chiffrement AES-256

On utilise ici la clé
K=000102030405060708090a0B0C0D0E0F01112131415161718191A1B1C1D1E1F1

avec le texte clair : T = 00112233445566778899aabbccddeeff

ENCRYPT - Mode AES-256, rounds r from 0 à 14

Legend :

input : cipher input

start : state at start of round r

s_box : state after SBox substitution (SubBytes)

s_row : state after ShiftRows

mixcol : state after MixColumn

k_sch : key schedule value for round r

output : cipher output

PLAINTEXT : 00112233445566778899aabbccddeeff

KEY : 000102030405060708090a0b0c0d0e0f01112131415161718191a1b1c1d1e1f1

R[00].input 00112233445566778899aabbccddeeff

R[00].k_sch 000102030405060708090a0b0c0d0e0f

** Start rounds **

R[01].start 00102030405060708090a0b0c0d0e0f0

R[01].s_box 63cab7040953d051cd60e0e7ba70e18c

R[01].s_row 6353e08c0960e104cd70b751bacad0e7

R[01].mixcol 5f72641557f5bc92f7be3b291db9f91a

R[01].k_sch 01112131415161718191a1b1c1d1e1f1

R[02].start 5e63452416a4dde3762f9a98dc6818eb

R[02].s_box 58fb6e364749c1113815b8468645ade9

R[02].s_row 5849b8e94715ad3638456e1186fbc146

R[02].mixcol 3af05ad02ab7491dc011924186752e27

R[02].k_sch 3ff9a37b3bfca57c33f5af773ff8a178

R[03].start 0509f9ab114bec61f3e43d36b98d8f5f

19

R[03].s_box 6b01996282b3ceef0d692705565d73cf

R[03].s_row 6bb327cf826973620d5d99ef5601ce05

R[03].mixcol f0b0dcacb5a7ab438be853166418df3f

R[03].k_sch 7450138d350172fcb490d34d754132bc

R[04].start 84e0cf2180a6d9bf3f78805b1159ed83

R[04].s_box 5fe18afdcd24350875bccd3982cb55ec

R[04].s_row 5f24cdeccdbc55fd75cb8a0882e13539

R[04].mixcol f3b7d5cbf6acc7442e75a9ce2b3d423b

R[04].k_sch bedac6e68526639ab6d3cced892b6d95

R[05].start 4d6d132d738aa4de98a66523a2162fae

R[05].s_box e33c7dd88f7e491d46244d263a4715e4

R[05].s_row e37e4de48f2415d846477d1d3a3c4926

R[05].mixcol f62c30dea420f2102552dcca5fbffe77

R[05].k_sch d3a12fa7e6a05d5b52308e162771bcaa

R[06].start 258d1f794280af4b776252dc78ce42dd

R[06].s_box 3f5dc0b62ccd79b3f5aa0086bc8b2cc1

R[06].s_row 3fcd00c12caa2cb6f58bc0b3bc5d7986

R[06].mixcol f37faa1527a11f8504102b327b0b82ec

R[06].k_sch 19bf6a2a9c9909b02a4ac55da361a8c8

R[07].start eac0c03fbb3816352e5aee6fd86a2a24

R[07].s_box 87baba75ea07479631be28a86102e536

R[07].s_row 87072836eabee5753102ba9661ba47a8

R[07].mixcol 02c78ad186cc1a944876fddcf86fb615

R[07].k_sch d94eed4f3feeb0146dde3e024aaf82a8

R[08].start db89679eb922aa8025a8c3deb2c034bd

R[08].s_box b9a7850b5693accd3fc22e1d37ba187a

R[08].s_row b9932e7a56c2180b3fba85cd37a7ac1d

R[08].mixcol 938cf899e2eab936e309d8ff2d90f468

R[08].k_sch 68aca8fcf435a14cde7f64117d1eccd9

R[09].start fb20506516df187a3d76bcee508e38b1

R[09].s_box 0fb7534d479eadda27386528531907c8

R[09].s_row 0f9e65c84738074d271953da53b7ad28

R[09].mixcol 0a4f18618c73a66cec3aed8ce1e2ddbf

R[09].k_sch 263ca67a19d2166e740c286c3ea3aac4

R[10].start 2c73be1b95a1b0029836c5e0df41777b

R[10].s_box 718faeaf2a32e7774605a6e19e83f521

R[10].s_row 7132a6212a05f5af4683ae779e8fe7e1

R[10].mixcol 33c57745018b34cbcbc51b09ab48fc08

R[10].k_sch 7200b44e86351502584a71132554bdca

R[11].start 41c5c30b87be21c9938f6a1a8e1c41c2

R[11].s_box 83a62e2b17aefddddc7302a2199c8325

R[11].s_row 83ae02251773832bdc9c2edd19a6fda2

R[11].mixcol d3e746781344049fef50606c9cf0a32f

R[11].k_sch 191cdc0e00ceca6074c2e20c4a6148c8

R[12].start cafb9a76138aceff9b928260d691ebe7

R[12].s_box 740fb8387d7e8b16144f13d0f681e994

R[12].s_row 747e13947d4fe9381481b816f60f8bd0

R[12].mixcol ed298bc2fafbb3511ec8c429bdbe9f3e

R[12].k_sch bd525c983b67499a632d388946798543

R[13].start 507bd75ac19cfacb7de5fca0fbc71a7d

R[13].s_box 53210ebe78de2d1fffd9b0e00fc6a2ff

R[13].s_row 53deb0ff78d9a2beffc60e1f0f212de0

R[13].mixcol 90c0ec7e9c922794a56504ecb0da4fc6

20

R[13].k_sch 43aa4b144364817437a663787dc72bb0

R[14].start d36aa76adff6a6e092c36794cd1d6476

** FinalRound **

R[14].s_box 66025c029e4224e14f2e8522bda44338

R[14].s_row 664285389e2e43024fa45ce1bd022422

R[14].k_sch 3ba3bb6700c4f2fd63e9ca7425904f37

R[14].output 5de13e5f9eeab1ff2c4d969598926b15

00112233445566778899aabbccddeeff --> 5de13e5f9eeab1ff2c4d969598926b15

21

B Tables de correspondances entre ecritures polyno-

miales et exponentielles

// ExpoToPoly[k] donne la representation polynomiale de w(x)^k

// 0 est representer par w(x)^255 bien que mathematiquement, w^255=1

const int ExpoToPoly[256] = {

0x01, 0x03, 0x05, 0x0f, 0x11, 0x33, 0x55, 0xff, 0x1a, 0x2e, 0x72, 0x96, 0xa1,

0xf8, 0x13, 0x35, 0x5f, 0xe1, 0x38, 0x48, 0xd8, 0x73, 0x95, 0xa4, 0xf7, 0x02,

0x06, 0x0a, 0x1e, 0x22, 0x66, 0xaa, 0xe5, 0x34, 0x5c, 0xe4, 0x37, 0x59, 0xeb,

0x26, 0x6a, 0xbe, 0xd9, 0x70, 0x90, 0xab, 0xe6, 0x31, 0x53, 0xf5, 0x04, 0x0c,

0x14, 0x3c, 0x44, 0xcc, 0x4f, 0xd1, 0x68, 0xb8, 0xd3, 0x6e, 0xb2, 0xcd, 0x4c,

0xd4, 0x67, 0xa9, 0xe0, 0x3b, 0x4d, 0xd7, 0x62, 0xa6, 0xf1, 0x08, 0x18, 0x28,

0x78, 0x88, 0x83, 0x9e, 0xb9, 0xd0, 0x6b, 0xbd, 0xdc, 0x7f, 0x81, 0x98, 0xb3,

0xce, 0x49, 0xdb, 0x76, 0x9a, 0xb5, 0xc4, 0x57, 0xf9, 0x10, 0x30, 0x50, 0xf0,

0x0b, 0x1d, 0x27, 0x69, 0xbb, 0xd6, 0x61, 0xa3, 0xfe, 0x19, 0x2b, 0x7d, 0x87,

0x92, 0xad, 0xec, 0x2f, 0x71, 0x93, 0xae, 0xe9, 0x20, 0x60, 0xa0, 0xfb, 0x16,

0x3a, 0x4e, 0xd2, 0x6d, 0xb7, 0xc2, 0x5d, 0xe7, 0x32, 0x56, 0xfa, 0x15, 0x3f,

0x41, 0xc3, 0x5e, 0xe2, 0x3d, 0x47, 0xc9, 0x40, 0xc0, 0x5b, 0xed, 0x2c, 0x74,

0x9c, 0xbf, 0xda, 0x75, 0x9f, 0xba, 0xd5, 0x64, 0xac, 0xef, 0x2a, 0x7e, 0x82,

0x9d, 0xbc, 0xdf, 0x7a, 0x8e, 0x89, 0x80, 0x9b, 0xb6, 0xc1, 0x58, 0xe8, 0x23,

0x65, 0xaf, 0xea, 0x25, 0x6f, 0xb1, 0xc8, 0x43, 0xc5, 0x54, 0xfc, 0x1f, 0x21,

0x63, 0xa5, 0xf4, 0x07, 0x09, 0x1b, 0x2d, 0x77, 0x99, 0xb0, 0xcb, 0x46, 0xca,

0x45, 0xcf, 0x4a, 0xde, 0x79, 0x8b, 0x86, 0x91, 0xa8, 0xe3, 0x3e, 0x42, 0xc6,

0x51, 0xf3, 0x0e, 0x12, 0x36, 0x5a, 0xee, 0x29, 0x7b, 0x8d, 0x8c, 0x8f, 0x8a,

0x85, 0x94, 0xa7, 0xf2, 0x0d, 0x17, 0x39, 0x4b, 0xdd, 0x7c, 0x84, 0x97, 0xa2,

0xfd, 0x1c, 0x24, 0x6c, 0xb4, 0xc7, 0x52, 0xf6, 0x01

};

// PolyToExpo[x] donne la puissance k de w telle que x=w^k,

// ou x est donne sous forme polynomiale

const int PolyToExpo[256] = {

0xff, 0x00, 0x19, 0x01, 0x32, 0x02, 0x1a, 0xc6, 0x4b, 0xc7, 0x1b, 0x68, 0x33,

0xee, 0xdf, 0x03, 0x64, 0x04, 0xe0, 0x0e, 0x34, 0x8d, 0x81, 0xef, 0x4c, 0x71,

0x08, 0xc8, 0xf8, 0x69, 0x1c, 0xc1, 0x7d, 0xc2, 0x1d, 0xb5, 0xf9, 0xb9, 0x27,

0x6a, 0x4d, 0xe4, 0xa6, 0x72, 0x9a, 0xc9, 0x09, 0x78, 0x65, 0x2f, 0x8a, 0x05,

0x21, 0x0f, 0xe1, 0x24, 0x12, 0xf0, 0x82, 0x45, 0x35, 0x93, 0xda, 0x8e, 0x96,

0x8f, 0xdb, 0xbd, 0x36, 0xd0, 0xce, 0x94, 0x13, 0x5c, 0xd2, 0xf1, 0x40, 0x46,

0x83, 0x38, 0x66, 0xdd, 0xfd, 0x30, 0xbf, 0x06, 0x8b, 0x62, 0xb3, 0x25, 0xe2,

0x98, 0x22, 0x88, 0x91, 0x10, 0x7e, 0x6e, 0x48, 0xc3, 0xa3, 0xb6, 0x1e, 0x42,

0x3a, 0x6b, 0x28, 0x54, 0xfa, 0x85, 0x3d, 0xba, 0x2b, 0x79, 0x0a, 0x15, 0x9b,

0x9f, 0x5e, 0xca, 0x4e, 0xd4, 0xac, 0xe5, 0xf3, 0x73, 0xa7, 0x57, 0xaf, 0x58,

0xa8, 0x50, 0xf4, 0xea, 0xd6, 0x74, 0x4f, 0xae, 0xe9, 0xd5, 0xe7, 0xe6, 0xad,

0xe8, 0x2c, 0xd7, 0x75, 0x7a, 0xeb, 0x16, 0x0b, 0xf5, 0x59, 0xcb, 0x5f, 0xb0,

0x9c, 0xa9, 0x51, 0xa0, 0x7f, 0x0c, 0xf6, 0x6f, 0x17, 0xc4, 0x49, 0xec, 0xd8,

0x43, 0x1f, 0x2d, 0xa4, 0x76, 0x7b, 0xb7, 0xcc, 0xbb, 0x3e, 0x5a, 0xfb, 0x60,

0xb1, 0x86, 0x3b, 0x52, 0xa1, 0x6c, 0xaa, 0x55, 0x29, 0x9d, 0x97, 0xb2, 0x87,

0x90, 0x61, 0xbe, 0xdc, 0xfc, 0xbc, 0x95, 0xcf, 0xcd, 0x37, 0x3f, 0x5b, 0xd1,

0x53, 0x39, 0x84, 0x3c, 0x41, 0xa2, 0x6d, 0x47, 0x14, 0x2a, 0x9e, 0x5d, 0x56,

0xf2, 0xd3, 0xab, 0x44, 0x11, 0x92, 0xd9, 0x23, 0x20, 0x2e, 0x89, 0xb4, 0x7c,

0xb8, 0x26, 0x77, 0x99, 0xe3, 0xa5, 0x67, 0x4a, 0xed, 0xde, 0xc5, 0x31, 0xfe,

0x18, 0x0d, 0x63, 0x8c, 0x80, 0xc0, 0xf7, 0x70, 0x07

};

22

C Détail de la boite-S et son inverse

/* La fameuse Boite-S */

const F256 SBox[256] = {

0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE,

0xD7, 0xAB, 0x76, 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4,

0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0, 0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7,

0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15, 0x04, 0xC7, 0x23, 0xC3,

0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75, 0x09,

0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3,

0x2F, 0x84, 0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE,

0x39, 0x4A, 0x4C, 0x58, 0xCF, 0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85,

0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8, 0x51, 0xA3, 0x40, 0x8F, 0x92,

0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2, 0xCD, 0x0C,

0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19,

0x73, 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14,

0xDE, 0x5E, 0x0B, 0xDB, 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2,

0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79, 0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5,

0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08, 0xBA, 0x78, 0x25,

0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,

0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86,

0xC1, 0x1D, 0x9E, 0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E,

0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF, 0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42,

0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16

};

/* la boite-S inverse */

const F256 InvSBox[256] = {

0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81,

0xF3, 0xD7, 0xFB, 0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E,

0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB, 0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23,

0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E, 0x08, 0x2E, 0xA1, 0x66,

0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25, 0x72,

0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65,

0xB6, 0x92, 0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46,

0x57, 0xA7, 0x8D, 0x9D, 0x84, 0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A,

0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06, 0xD0, 0x2C, 0x1E, 0x8F, 0xCA,

0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B, 0x3A, 0x91,

0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6,

0x73, 0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8,

0x1C, 0x75, 0xDF, 0x6E, 0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F,

0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B, 0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2,

0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4, 0x1F, 0xDD, 0xA8,

0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,

0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93,

0xC9, 0x9C, 0xEF, 0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB,

0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6,

0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D

};

23

Références

[Can03] Anne Canteaut. ”Programmation en Langage C”. INRIA - projet
CODES, 2003.

[Cas98] Bernard Cassagne. ”Introduction au Langage C”. Laboratoire CLIPS
UJF/CNRS, 1997-1998.

[DR98] Joan Daemen and Vincent Rijmen. AES Proposal : Rijndael. Tech-
nical report, 1998. http://citeseer.ist.psu.edu/daemen98aes.

html.

[DR01] Joan Daemen and Vincent Rijmen. The Design of Rijndael.
Springer-Verlag, 1st edition, 2001. http://www.iaik.tu-graz.ac.

at/research/krypto/AES/.

[FS03] Niels Ferguson and Bruce Schneier. Practical Cryptography. Wiley
Publishing, Inc, 1st edition, 2003. http://www.macfergus.com/pc/.

[Kob98] Neal Koblitz. Algebraic Aspects of Cryptography, volume 3 of Algo-

rithms and Compuitation in Mathematics. Springer-Verlag, 1998.

[KR88] B.W. Kernighan and D.M. Ritchie. The C Programming Language.
Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1988. 2nd edition.

[MVO96] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot.
Handbook of Applied Cryptography. Computer Sciences Applied Ma-
thematics Engineering. CRC Press, Inc., 1st edition, 1996. http:

//www.cacr.math.uwaterloo.ca/hac/.

[Pil04] Jean-François Pillou. Introduction au Langage C++. Technical re-
port, Tutorial, Encyclopédie Informatique Libre, 2004. http://www.
commentcamarche.net/cpp/cppintro.php3.

[PKP03] Peter Prinz and Ulla Kirch-Prinz. C Pocket Reference. O’Reilly &
Associates, 2003.

[Sch97] Bruce Schneier. ”Cryptographie Appliquée”. Vuibert, Wiley and In-
ternational Thomson Publishing, NY, 2nd edition, 1997. .

[Ste90] David Stevenson. ”IEEE Std 754-1985 IEEE Standard for Binary
Floating-Point Arithmetic”. Technical report, IEEE Standards Asso-
ciation, 1990.

[Sti02] Douglas R. Stinson. Cryptography : Theory and Practice. Chap-
man & Hall/CRC Press, 2nd edition, 2002. http://www.cacr.math.
uwaterloo.ca/~dstinson/CTAP2/CTAP2.html.

[Var05] Sébastien Varrette. Cours de programmation avancée : le langage C.
Université du Luxembourg, janvier 2005. http://www-id.imag.fr/
~svarrett/.

24

