Master CSCI 2005-2006

PROJET EN LANGAGE C—H++

IMPLEMENTATION DE L’ALGORITHME A.E.S

Sebastien.Varrette@imag.fr

1 Objectifs

L’objectif de ce projet est la réalisation d’une implémentation du cryptosystéme
a clé secrete AES en C++.

Un cryptosystéeme permet & deux protagonistes, appelés traditionnellement Alice
et Bob, de communiquer ensemble sur un canal peu sir lorsqu’un opposant,
Oscar, souhaite espionner cette conversation. Evidemment, Oscar ne doit pas
comprendre les informations qui sont échangées.

Canal de communication BOB

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -

message M
F1G. 1 — Les protagonistes d’un cryptosysteme

Pour un cryptosysteme, on définit les expressions suivantes :

— Texte clair : information qu’Alice souhaite transmettre a Bob (Ex : texte
en frangais, donnée numérique etc...)

— Chiffrement : processus de transformation d’un message M de telle ma-
niere a le rendre incompréhensible. Ce processus est basé sur une fonction de
chiffrement E et permet de génerer ainsi un message chiffré C = E(M)

— Déchiffrement : processus de reconstruction du message clair a partir du
message chiffré, basé sur une fonction de déchiffrement D.

On a donc D(C) = D(E(M)) = M (D et E sont injectives).

K

e
O
i (F) .
Texte clair Texte chiffré

:

F1G. 2 — Ilustration du chiffrement d’un texte clair

En pratique : E et D sont paramétrées par des clefs K. et K; (comme illustré

dans la figure 2) et sont liées par I’équation 1 :

{EKE(M) =C

Dk, (C)=M M)

Le lien qui unit K, et K, définit deux grandes catégories de systemes crypto-
graphiques :
1. les systemes & clef secréte (ou symétriques) (K, = Kq = K). C’est le cas
du systeme A.E.S.

2. les systemes a clef publique (ou asymétriques) (K. # K4) comme par

exemple le systeme R.S.A.

Rijndael est le chiffrement a clef privée qui a été retenu par le NIST (National
Institute of Standards and Technology) comme le nouveau standard américain
de chiffrement AES : Advanced Encryption Standard [DRO1] visant & remplacer
DES (Data Encryption Standard).

C’est un code par blocs encodant 128 bits avec des clefs de 128, 192 ou 256 bits.

2 Conventions

2.1 Entrées et Sorties

Les entrées et les sorties d’AES consistent en des séquences de 128 bits. La clé
secrete de chiffrement est une suite de 128, 192 ou 256 bits.

2.2 Interprétation des octets et représentation matricielle

Dans AES, les octets correspondent & des séquences de 8 bits interprétées comme
des éléments du corps fini a 256 éléments Fos6 (voir §3). Ensuite, tout flux
d’octets est organisé sous forme matricielle, selon un modele illustré dans la
figure 3. Cette matrice aura nécessairement 4 lignes et un nombre de colonnes

128 bits = 16 octets

| aO‘ al‘ aZ‘ a3‘ a4‘ as‘ aé

]

7 a8 49al0| d1l a12 13 |al4 |a15

- Flux de données

8 bits
Représentatio
matricielle

a0 | a4 a8 | al2
al | a5 a9 | al13

4 lignes

a2 a6 | a10| al4
a3 a7 | all| al5

N colonnes

Fia. 3 — Représentation matricielle d’'un flux de 16 octets

fonction de la taille du flux, définissant ainsi une taille de bloc N. Par exemple,

pour les flux d’entrée/sortie qui, dans AES, correspondent & des séquences de
16 octets, on obtiendra des matrices de 4 lignes et Nb = 4 colonnes. De méme,
— la matrice associée a une clé de 128 bits aura 4 lignes et Nk = 4 colonnes;
— avec une clé de 192 bits, la matrice aura 4 lignes et Nk = 6 colonnes;;

— pour une clé de 256 bits, la matrice aura 4 lignes et Nk = 8 colonnes;

Dans la suite, on notera State 1’écriture matricielle du flux d’entrée/sortie sur
lequel opere chaque étape de l'algorithme.

3 Préliminaires mathématiques : le corps Fos

3.1 Rappels : construction d’un corps fini a p™ éléments

On considere d’abord le corps fini & p éléments F), (ou p est premier).

Comme p est premier, F, = Z/pZ. Soit m un entier positif. On souhaite
construire le corps F,m possédant p™ éléments. Pour cela, on considere g un
polynéme unitaire irréductible de F,[X] de degré m. Alors on peut montrer que
[F,m est isomorphe & F,[X]/g(X). Autrement dit, tout élément de F,m peut étre
vu comme un polynéme de F,[X] (i.e dont les coefficients sont dans F,, = Z/pZ)
de degré inférieur a m :

m—1
Fpm ~ {ZaiXi, aiGIFp} = ZaiXi mod g(X), a; €T,
=0 >0

3.2 Applications a la constructions de Fys4

Dans ce cas, p = 2 et m = 8. Il convient donc de choisir un polynéme unitaire
irréductible de degré 8. Plusieurs choix sont possibles.

Ainsi, les encodeurs/décodeurs CIRC utilisés pour les CD audio utilisent le
polynoéme g(X) = X8+ X"+ X2+ X +1.

Pour AES, le polynéme utilisé est : ¢(X) = X%+ X4+ X3+ X + 1.

On aura donc :

7
F25ﬁg{za,~xi, aie{O,l}}: Y a; X" mod g(X), a;€{0,1}

=0 >0

En pratique, on représentera le polynome a7 X’ + ... 4+ a1X + ag par Loctet
a7ag - ..a1ag. On dira qu’on utilise une notation polynomiale des éléments de

Fase.

3.3 Addition dans Fys4

L’addition de deux éléments de Fo = Z/5Z correspond a l'opération XOR .
Ainsi, ’addition de deux éléments a et b de Fo56 correspond & ’addition de deux
polyndémes & coefficients dans Fy = Z /97 :

a(z) = arx’ +...4 a1z + ag
b(x) = bz’ +...+bx+ag
— a(z) +b(z) = (a7 @bz 4+ ...+ (a1 ®by)x + (ag D by)

Exemple :
@S+t 42?2+ +1)+ (@ +2+1)=2"4+254+2* +22 (notation polynomiale)
{01010111} + {10000011} = {11010100} (notation binaire)
{57} + {83} = {d4} (notation hexadécimale)

Remarque En notation hexadécimale, le polynéme g(X) s’écrit 0x11B.

3.4 Multiplication dans Fy54

En notation polynoémiale, la multiplication dans Fo54 correspond a la multipli-
cation de deux polynomes suivie d’une réduction modulo g(z). Exemple :

S+t + 2242+ D) x @ +z+1) = 2B 42t 429428+ +
e+ ad b ot
S+ttt +1
= 2B+l 427+ +af 4P a2t 4P + 1

Et

(B4 29 28420+ 25+t 4234+1) mod (2842t + 23+ +1) = 27+ 20+ 1.
La réduction modulo g(z) assure que le résultat reste un polynéme binaire de
degré inférieur a 8 qui peut donc étre représenté par un octet. Dans 'exemple
précédent, on a obtenu : {57} x {83} = {C1}.

En pratique, pour réaliser cette multiplication, on dispose de deux méthodes,
expliquées dans les sections suivantes.

3.4.1 Méthode ”lente” : multiplication par z°.

Cette méthode consiste a réaliser effectivement la multiplication polynomiale.

Soit @ € Fa56. En notation polynomiale, a(z) = azz” + ... + ayx + ag

Ainsi, z.a(x) = a72® + ...+ a12% + agz. 1l reste & effectuer la réduction modulo

g(x). Deux cas sont possibles :

— Soit a7y = 0, on obtient directement une expression réduite et donc z.a(z) =
a6:r37 + ...+ a1x2 + agx.

— Soit a; = 1 et dans ce cas : m.a(z) = 2% + ... + a12? + apxr. En outre,
g(x) =28 +2*+23+2+1=0 mod g(z) = 2® =2* +2°+2+1 mod g(x)
donc

S +agr’+ .. +arrt+apr = (agr” + ...+ a12® +apz) @ (et + 23+ +1)

En notation polynomiale, cette opération consiste donc a un décalage a gauche
suivi éventuellement d’un XOR bits-a-bits avec {1B}.
Soit xtime la fonction qui réalise I'opération x x a(z) mod g(z). xtime peut
étre utilisée pour définir la fonction xi_time qui réalise 'opération z¢ x a(x)
mod g(z). Enfin, & partir de cette derniere fonction, il est possible de réaliser
la multiplication complete de deux éléments de Fos6.

3.4.2 Méthode "rapide” a partir d’une représentation exponentielle.

Soit w(x) un générateur de Fj,[X]/g(X) : dans ce cas, tout élément non nul de

Fas6 se représente de maniere unique par w(z)’ mod g(z), 0 < i < 255.

On obtient ainsi une autre écriture pour Fosg :
I[“‘256 = {0} U {w(x)l mod g($)}0§i<255

Avec cette représentation (dite cyclique ou exponentielle), la multiplication de
deux éléments a et b non nuls est aisée :

a@) = w(ey 2)
bx) = w(z) 3)
a(m)xb(x) — w(w)iJrj mod 255 (4)

L’idée consiste alors a passer par cette représentation pour effectuer la multi-
plication. On utilise pour cela des tables de correspondance entre les éléments
a(x) de Fas6 et 'exposant i correspondant & sa représentation exponentielle.

A noter que la valeur de w(x) dépend de g(x).

Le tableau suivant fournit un générateur simple pour quelques polynoémes irré-
ductibles g(x).

‘ Polynome irréductible ‘ Rep. hexa ‘ générateur ‘ Rep. hexa ‘ Application ‘

S+’ a1 0x187 w(z) == 0x02 Codes CIRC
I R 0x11B | w(z) =z +1 0x03 AES

TAB. 1 — Quelques exemples de générateurs pour [F,[X]/g(X)

Ainsi, a partir de la fonction de multiplication lente, on géneére une table
ExpoToPoly de 256 entrées telle que ExpoToPoly[k] donne la representation
polynomiale de w(z)* mod g(x). (Par convention, on représentera 1’élément
0 par w(x)?® bien que mathematiquement, w?>® = 1. La table PolyToExpo
correspond a la table inverse. Ces tables sont fournie en annexe B.

On utilise ces tables pour effectuer efficacement la multiplication de deux élé-
ments a et b a partir de la relation (4).

4 Description de P’algorithme de chiffrement A.E.S

Pour étre tout a fait exact, ’algorithme AES n’est pas exactement celui de Ri-
jndael dans la mesure ou ce dernier supporte des tailles de blocs plus nombreux
qu’AES. AES fixe la taille de blocs a 128 bits - représenté par Ny, = 4.
Ny, reflete le nombre de mots de 32 bits dans un bloc (c’est aussi le nombre de
colonnes nécessaire pour une représentation matricielle) .

AES utilise des clés de 128, 192 ou 256 bits. La longueur de clé est carac-
térisée de facon similaire par Ny = 4,6 ou 8.

Comme DES, AES exécute une séquence de rondes qui seront détaillés dans la
suite. On note NN, le nombre de rondes qui doivent étre effectuées. Ce nombre

N, | N, | NV,
AES-128 4 4 10
AES-192 6 4 12
AES-256 8 4 14

TAB. 2 — Détail des configurations possibles

dépend des valeurs de N et de Ni. Les différentes configurations possibles sont
détaillés dans le tableau 2.

Comme on I’a vu en §2.2, AES opere sur une matrice 4 x Ny d’éléments de Fasg,
notée State. Le chiffrement AES consiste en une addition initiale de clé, notée
AddRoundKey, suivie par N, — 1 rondes, chacune constitué de quatre étapes :

1. SubBytes : il s’agit d’une substitution non-linéaire lors de laquelle chaque
octet est remplacé par un autre octet choisi dans une table particuliere
une Boite-S).

2. ShiftRows est une étape de transposition ou chaque éléments de la ma-
trice est décalée cycliquement a gauche d’un certain nombre de colonnes.

3. MixColumns effectue une produit matriciel en opérant sur chaque colonnes
(vu alors comme un vecteur) de la matrice.

4. AddRoundKey qui combine par addition chaque octet avec l'octet corres-
pondant dans une clé de ronde obtenue par diversification de la clé de
chiffrement.

Enfin, une ronde finale FinalRound est appliquée (elle correspond & une ronde
dans laquelle I’étape MixColumns est omise).

La clé de ronde pour I’étape i sera notée RoundKeys[i], et RoundKeys [0] ré-
férencera un des parametres de ’addition initiale de clé. La dérivation de la clé
de chiffrement K dans le tableau RoundKeys[] est notée KeyExpansion et sera
détaillée au §4.5.

Le chiffrement AES peut se décrire de fagon formelle de la fagon suivante :

AES_Encrypt(State, K) {
KeyExpansion(K, RoundKeys);
/* Addition initiale */
AddRoundKey(State, RoundKeys[0]);
/* Les Nr-1 rondes */
for (r=1; i<Nr; r++) {

SubBytes(State) ;
ShiftRows(State);
MixColumns(State) ;
AddRoundKey(State, RoundKeys[r]);

}

/* FinalRound */

SubBytes(State) ;

ShiftRows(State);

AddRoundKey(State, RoundKeys[Nr]);

Les sections suivantes détaillent chaque étape.

4.1 Etape SubBytes

L’étape SubBytes correspond a la seule transformation non-linéaire de 1’algo-
rithme. Dans cette étape, chaque élément de la matrice State est permuté selon
une table de substitution inversible notée SBox. Cette table est fournie en an-
nexe C. La figure 4 illustre par exemple la transformation de I’élément a2 en
I’élément b272 = S[G/Q’Q].

9,0/ 9,1 |%,2 |93 Bo.o[Po1|Po2| P03
Qo 41|82 &3 m Do Dyq[byo| by
ol &3 bt Al I b, 3
o &B1| Ry 833 3o D31 [P35 033

S

Fic. 4 — Etape SubBytes

1

Remarque : La table SBox dérive de la fontion inverse t : ¢ — a~+ sur Fosg.

Cette fonction est connue pour ses bonnes propriétés de non-linéarité. Afin
d’éviter des attaques basées sur de simples propriétés algébriques, la boite-S est
construite en combinant cette fonction inverse avec une transformation affine
inversible f. On a donc :

SBox[a] = f (t(a)),Va € Fas6

Les concepteurs ont également fait en sorte que cette Boite-S n’admette pas de
point fixe ni de point fixe opposé :

SBox[a] + a # 00, Va € Fasg
SBox[a] + a # FF, Va € Fasg

Enfin, la fonction affine f est définie par :

b1 ML 000 1 1 1 17 [a7] [0
be 11000111 |al |1
bs 11100011 lal |1
b 1111000 1| lal o
b=fla)= 1,.1=11 111100 0 *|a| 0
bl o1 111100 la o
by 00111110 la |1
o] o001 111 1] lal [

Opération inverse L’opération inverse de SubBytes est notée InvSubBytes
et consiste a effectuer la méme manipulation mais & partir de la Boite-S inverse
S~1 notée InvSBox. Cette table est également fournie en annexe C.

Remarque : mathématiquement, comme la fonction ¢ est son propre inverse, on
a:
SBox 'la] = ¢7! (f7'(a)) = ¢ (f'(a)) ,Ya € Fasg

La fonction affine inverse f~! est définie par :

b1 (010100 1 0] T[a7] [0
| 10010100 1| l|ag| [0

bs 100107100 la| [0

B bl o1 00101 0 lal o
b=f"@= 1, 1=1o 010010 1] |alt]|o
by 10010010 |al |1

by 01001001 |a| o

] 10100100 lal |

4.2 L’étape Shiftrows

L’étape Shiftrows opere sur les lignes de la matrice State et effectue pour
chaque élément d’une ligne un décalage cyclique de n éléments vers la gauche.
L’offset n de décalage dépend de la ligne considérée. La ligne i est décalé de
C; éléments, si bien que 1’élément en position j de la ligne i est déplacé en
position (j — C;) mod Np. Les valeurs de C; dépendent de la valeur de Ny, et
sont détaillée dans la table 3.

(N[Co |G [Ca] G]
401]2]3

ol | S| Ot
[ev] Hen) Nenl Ran}
= =] = =
SMIENIENIEN)
| ool oo

TAB. 3 — Shiftrows : décalage des lignes en fonction de N dans Rijndael

Evidemment, cette table n’est fournit qu’a titre indicatif dans la mesure ou AES
fixe la taille de bloc & N, = 4. L’étape Shiftrows est illustrée dans la figure 5.

Décalage:
al b|lc|d 0 al b|lc|d
e| f |9 h -1 flg|h|e
- ShiftRows i—'))
il 0k 2 k|0
m| nj|o|p -3 p|m|n|o

Fia. 5 — Opération Shiftrows dans AES

Opération inverse L’opération inverse de Shiftrows est notée InvShiftrows
et consiste a effectuer au niveau le la ligne ¢ un décalage cyclique a droite de C;
éléments.

4.3 MixColumns

La transformation MixColumns opeére sur les colonnes ¢ de la matrice State en
les traitant comme un polynéme a(x) de degré 3 a coefficients dans Fosg.
L’étape MixColumns consiste alors a effectuer pour chaque colonne une multi-
plication par un polynéme c¢(z) fixé suivi d’une réduction modulo le polynéme
z* + 1. Dans MixColumns, on réalise donc 'opération :

(0322 4+ 2% + 2+ 02) x a(z) mod (z* + 1)

Matriciellement, cette opération s’ecrit :

b 02 03 01 O1 ao
b 01 02 03 01 a
b(z) = c(z) x a(z) mod (z*+1) = by| ~ l01 01 02 03| |ay
bs 03 01 01 02 as

La figure 6 illustre cette étape.

a0 2 | %3
Y i) -

830 &, %3

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

Fi1a. 6 — Opération MixColumns

Opération inverse L’opération inverse de MixColumns est notée InvMixColumns
et consiste a effectuer la méme opération mais a partir d’'une multiplication par
le polynome d(x) = ¢~ !(x) donné par la relation :

(032 + 22 4+ 2+ 02) x d(z) =01 mod (z* 4 1)

On obtient ainsi :
d(x) = 0Bz® + 0Dz? 4 09z + OE

Matriciellement, cette étape revient a effectuer le calcul suivant :

bg OE OB OD 09 ap
b 09 OE OB OD a
b(x) — d(m) X a(m) mod (m + 1) <~ by “ oD 09 OE OB % az
b3 OB OD 09 OE as

4.4 AddRoundKey

Lors de I'étape AddRoundKey, la matrice State est modifiée en ’additionnant
(au sens de I'addition termes a termes dans Fos6) avec une clé de ronde. Cette
étape est illustrée dans la figure 7.

8,0/ 9,1 |92 |F3 Boo|Po1|Po2Pos
Ao/ @182 &3 (byobia|bys|byg
LAddRoundKey}

ol &3 by (b2 1 b, 5
0| &1 | B2\ byo|bs1 /b3, | Dy3

k
1,0 I(1,1)
k2,0 I(2,1 2,3
3,0 I(3,1 k3,2 k3,3

Fia. 7 — Opération AddRoundKey

=

4.5 Détails de la diversification de la clef dans AES

Cette étape, noté KeyExpansion, permet de diversifier la clé de chiffrement K
(de 4Ny octets) dans une clé étendue W de 4N, (N, + 1) octets. On disposera
ainsi de N, + 1 clés de rondes (chacune de 4Nb octets - voir figure 8).

Nb

=

’ i

Nk W[0] E
W[1]
4 (KeyExpansion]—»

L

Fia. 8 — Opération KeyExpansion
Les tableaux K et W peuvent étre vus comme une succession de colonnes chacunes
constituées de 4 octets, comme lillustre la figure 9. Dans la suite, on notera

c[i] (resp. k[1]) la (i + 1)®™ colonne de W (resp. de K).

10

(Nr+1)*Nb colonnes

W[0] W[N]

F1G. 9 — Vision de W comme une succession de colonnes.

L’algorithme utilisé pour la diversification de clé differe légerement selon que

N <6 ou Ni > 6. Dans tous les cas, les IV, premieres colonnes de K sont reco-

piées sans modifications aux Ny premieres colonnes de W. Les colonnes suivantes

sont définies récursivement a partir des colonnes précédentes. KeyExpansion y

utilise notamment les éléments suivants :

— SubWord qui est une fonction prenant en entrée un mot de 4 octets et applique
la boite-S Sbox sur chacun des octets.

— La fonction RotWord qui prend en entrée un mot de 4 octets a = [ag, a1, az, as]
et effectue une permutation circulaire de fagon a renvoyer le mot [a1, as, as, ag).

— Le tableau de constantes de rondes Rcon[i], indépendant de N, qui est
défini récursivement par :

Reon[i] = [z, 00, 00,00],Vi > 1

On pourra utiliser la fonction xi_time (définie au §3.4.1) pour calculer la
valeur de Rcon[i].
La définition formelle en pseudo-code C de I'étape KeyExpansion est alors la
suivante :

KeyExpansion(K, W) {
/* Recopie directe des Nk premiere colonnes */
for (i=0; i<Nk; i++) c[i] = k[i]l;
for (i=Nk; i<Nb*(Nr+1); i++) {
tmp = cl[i-1];
if (i mod Nk == 0)
tmp = SubWord(RotWord(tmp)) + Rcon[i/Nk];
else if ((Nk > 6) &% (i mod Nk == 4)) // Cas Nk > 6
tmp = SubWord (tmp) ;
cli]l = c[i-Nk] + tmp;

}

L’annexe A.1 fournit des exemples de diversification de clés.

4.6 Déchiffrement dans AES

La routine de chiffrement peut étre inversée et réordonnée pour produire un al-
gorithme de déchiffrement utilisant les transformations InvSubBytes, InvShiftRows,
InvMixColumns, et AddRoundKey. Une modélisation formelle de ’algorithme de
déchiffrement en pseudo-C pourrait étre :

11

AES_Decrypt(State, K) {
KeyExpansion (X, RoundKeys);
/* Addition initiale */
AddRoundKey(State, RoundKeys[Nr]);
/* Les Nr-1 rondes */
for (r=Nr-1; i>0; r—-) {

InvShiftRows(State);
InvSubBytes(State);
AddRoundKey(State, RoundKeysl[r]);
InvMixColumns (State) ;

}

/* FinalRound */

InvShiftRows (Out) ;

InvSubBytes (Out) ;

AddRoundKey (Out ,RoundKeys [0]) ;
}

Dans cette version du déchiffrement, la séquence des transformations differe de
celle du chiffrement (voir §4), le traitement de la clé restant inchangé.
Certaines propriétés du Rijndael permettent d’implémenter une routine de dé-
chiffrement équivalente qui respecte la séquence de transformations de la rou-
tine AES_Encrypt, la structure de celle-ci étant la plus efficace. Cette version
équivalente n’est pas demandée ici.

5 Cabhier des charges de I’exécutable a produire

La compilation des sources produites devra fournir un exécutable aes.

On se limitera au chiffrement/déchiffrement d’un bloc de 128 bits. Les groupes
qui le souhaitent pourront étendre leur systéeme au chiffrement/déchiffrement
de chaines de longueur quelconque, voir méme d’un fichier!.

Cet exécutable devra supporter au minimum les options suivantes :

-h : affichage de 'aide.

-k <key> : utilisation de la cle <key> donnee sous forme hexadecimale sur
128 bits. Valeur par defaut : 2b7e151628aed2a6abf7158809cf4f3c

-t <text> : le texte a chiffrer sous forme d’un bloc de 128 bits ecrit en hexa-
décimal. Valeur par defaut : 00112233445566778899aabbccddeeff

-d : déchiffrement du texte <text>.
-b : calcule le débit (bit rate) de chiffrement (en Ko/s) .
-v : verbose, affiche des informations supplementaires.

Libre a vous également d’implémenter d’autres options (pour permettre par

exemple de supporter tous les modes de chiffrements (AES-128, AES-192, AES-256)).

Voici par exemple le résultat de 'appel de cet exécutable sur quelques options :

1 se posera alors un probleme de convention de padding

12

[13:10:36] seb@falkor ENSEIGNEMENTS/TD/AES_C++>./aes -h
NAME
aes - Advanced Encryption Standard (Mode AES-128)

SYNOPSIS
aes [-h] [-k key] [-t text] [-v] [-d] [-x]

DESCRIPTION

Encrypt a clear Text using A.E.S

-h : print help and exit

-k : value of the private key (hexadecimal 128 bits format)
Default value : 0x2b7e151628aed2a6abf7158809cf4f3c

-t : text to (de/en)crypt (hexadecimal 128 bits format)
Default value : 0x00112233445566778899aabbccddeeff

-v : verbose mode

-d : decryption mode

-b : compute the bit rate when encrypting

AUTHOR
Sebastien Varrette <Sebastien.VarretteQimag.fr>

REPORTING BUGS
Report bugs to <Sebastien.Varrette@Qimag.fr>

COPYRIGHT
This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.
SEE ALSO
Federal Information Processing Standards Publication 197
"Advanced Encryption Standard (AES)" - nov. 2001
http://csrc.nist.gov/encryption/aes/rijndael/
[13:15:17] seb@falkor ENSEIGNEMENTS/TD/AES_C++>./aes
0011223344556677889%aabbccddeeff --> 8df4efaac5c7573a27d8d055d6e4d64b
[13:16:46] seb@falkor ENSEIGNEMENTS/TD/AES_C++>./aes -b

Debit : 80.000 Ko/s
[13:16:51] seb@falkor ENSEIGNEMENTS/TD/AES_C++>./aes -d \

-t 8df4e9aacbc7573a27d8d055d6e4d64b
8df4e9%aacbc7573a27d8d055d6e4d64b —-> 00112233445566778899aabbccddeeff

Pour vous aider, une archive initiale est disponible a ’adresse http://www-id.

imag.fr/"svarrett/enseignements/2005-2006/Init_src_projetAES.tgz

Cette archive contient notamment :

— un fichier de configuration Makefile générique qui devrait compiler votre
projet directement par la commande make.

— un répertoire Include/ qui contiendra vos fichiers de header (.h).

— un répertoire Ressources/ qui contient un binaire qui devrait vous aider a
tester votre propre exécutable. Attention, ce binaire est fourni sans aucune
garantie !

— Enfin, si vous prenez le temps de commenter vos sources selon les conventions

13

de Doxygen?, la commande "make doc" devrait générer automatiquement la
documentation de vos sources (dans le répertoire Doc/). Cela pourra vous
aider lors de la rédaction du rapport.

6 Consignes d’envoi

Un rapport avec les sources de votre projet devra m’étre remis par mail
(Sebastien.Varrette@imag.fr) ainsi qu’a Roland Gillard
(Roland.Gillard@ujf-grenoble.fr) sous forme d’un fichier unique compressé
(format AES_src_<Nom1>_<Nom2>.tgz) au plus tard le lundi 4 décembre.

*http://www.doxugen.org

14

A Aide au débuggage

A.1 Diversification de la clé

Voici par exemple les clés de rondes dérivées de la clé

K=00000000000000000000000000000000

RoundKeys [00] = 00000000000000000000000000000000
RoundKeys [01] = 62636363626363636263636362636363
RoundKeys [02] = 9b9898c9f9fbfbaadb9898c9f9fbfbaa
RoundKeys [03] = 90973450696ccffaf2f457330b0fac99
RoundKeys [04] ee06da7b876a1581759e42b27e91ee2b
RoundKeys [05] = 7£2e2b88£8443e098dda7cbbf34b9290
RoundKeys [06] ec614b851425758c99f£09376ab49ba’7
RoundKeys [07] 217517873550620bacaf6b3cc61bf09b
RoundKeys [08] = 0e£903333ba9613897060a04511dfa9f
RoundKeys [09] = b1d4d8e28a7db9dald7bb3de4c664941

RoundKeys [10]

On pourra vérifier également cette diversification sur la clé par défaut

b4ef5bcb3e92e21123e951cf6£8£188e

(K=2b7e151628aed2a6abf7158809cf4f3c) :

RoundKeys [00] 2b7e151628aed2a6abf7158809cf4f3c
RoundKeys [01] a0fafel1788542cb123a339392a6¢7605
RoundKeys [02] = £2c295f27a96b9435935807a7359f67f
RoundKeys [03] 3d80477d4716fe3ele237e446d7a883b
RoundKeys [04] = ef44a541a8525b7£fb671253bdb0bad00
RoundKeys [05] = d4d1c6£87c839d87caf2b8bc11£9156bc

RoundKeys [06]
RoundKeys [07]
RoundKeys [08]
RoundKeys [09]
RoundKeys [10]

6d88a37a110b3efddbf98641ca0093fd
4e54f70e5f5fc9f384a64fb24eabdcaf
ead27321b58dbad2312bf5607£8d292f
ac7766£319fadc2128d12941575c006e
d014f9a8c9ee2589e13f0cc8b6630cab

15

A.2 Chiffrement AES-128

Voici le détail des différentes étapes qui composent le chiffrement par AES du
texte T' = 00112233445566778899%aabbccddeeff
avec la clé K = 2b7e151628aed2a6abf7158809cf4f3c

ENCRYPT - Mode AES-128, rounds r from O a 10

Legend

input : cipher input

start : state at start of round r

s_box : state after SBox substitution (SubBytes)
s_row : state after ShiftRows

mixcol : state after MixColumn
k_sch : key schedule value for round r
output : cipher output

PLAINTEXT : 00112233445566778899%aabbccddeeff
KEY : 2b7e151628aed2a6abf7158809cf4f3c
R[00] .input 00112233445566778899aabbccddeeff
R[00] .k_sch 2b7e151628aed2a6abf7158809cf4f3c
*x Start rounds *x*

R[01] .start 2b6£37256cfbb4d1236ebf33c512a1c3
R[01] .s_box £1a89a3f500£8d3e269f08c3a6c9322e
R[01] .s_row £10£f082e509f323f26c99a3eab6a88dc3
R[01] .mixcol ced99c53171cea23a8248245faa25149
R[01] .k_sch a0fafel1788542cb123a339392a6¢c7605
R[02] .start 6e2362449f48c6928b87bb7cd0ce274c
R[02] .s_box 9f26aalbdb52b44£3d17ea10708bcc29
R[02] .s_row 9f52ea29db17cc1b3d8baadf7026b410
R[02] .mixcol 1037795043a16290199a28f82eeb1522
R[02] .k_sch £2c295£27a96b9435935807a7359f67f
R[03] .start e2fb5eca23937dbd840afa8825db2e35d
R[03] .s_box 98e6ce3a129ab9610979¢c2134c37114c
R[03].s_row 989ac24c¢1279113a0937ce614ce6b913
R[03] .mixcol 10a6497384e9072ae44f1a200358f6ad
R[03] .k_sch 3d80477d4716fe3e1e237e446d7a883b
R[04] .start 2d260e0ec3fff914fab6c64646e227e96
R[04].s_box d8f7abab2e1699fa2d5043439£93£390
R[04] .s_row d81643902e50£f3ab2d93abfa9f£79943
R[04] .mixcol 42a1e31df42b659cab50ce6a0£d998452
R[04] .k_sch ef44a541a8525b7fb671253bdb0bad00
R[05] .start adeb465c5c793ee3137dc39b26922952
R[05].s_box 95d95a4a4ab6b2117df£2e14£74£a500
R[05].s_row 95b62e004affab4a7d4£5a11£7d9p214
R[05] .mixcol de907£3c61113a10601cb5b023876d41
R[05] .k_sch d4d1c6£87c839d87caf2b8bc11£915bc
R[06] .start 0a41b9c41d92a797aaee0d0c327e78fd
R[06].s_box 6783561ca44f5c88ac28d7fe23f3bcb4
R[06] .s_row 674£d754a428bclcacf3568823835cfe
R[06] .mixcol 9¢ccf61998b37cb5b932370417a24015d

16

R[06] .k_sch 6d88a37a110b3efddbf98641ca0093fd

R[07] .start £147c2e39a3cf5a648daf600b02492a0
R[07] .s_box a1a02511b8ebe62452574263e7364fe0
R[07].s_row aleb42e0b8574£1152362524e7a0e663
R[07] .mixcol dd4afb8accd642e9ff7542adabee35b2
R[07].k_sch 4e54f70e5f5fc9f384a64fb24eabdcif
R[08] .start 931e028493898b1a7bd30d1fe548e9fd
R[08] .s_box dc72775fdca73da22166d7c0d9521e54
R[08] .s_row dca7d754dc661e5£215277a2d9723dc0
R[08] .mixcol d2bf32a7486d67b961be6019c2ba8aasd
R[08] .k_sch ead27321b58dbad2312bf5607£8d292f
R[09] .start 386d4186fde0dd6b50959579bd37a38b
R[09] .s_box 073c834454e1c17£532a2ab67a9a0a3d
R[09] .s_row 07e12a3d542a0a44539a837f7a3cc1bb
R[09] .mixcol 219df5b8985aa654ef9d5512c7eclel4
R[09] .k_sch ac7766£319fadc2128d12941575c006e
R[10] .start 8dea934b81a07a75c74c7c5390b01eba
**x FinalRound *x*

R[10] .s_box 5d87dcb30ce0da9dc62910ed60e77202
R[10].s_row 5de010020c2972b3c6e7dc9d6087daed
R[10].k_sch d014f9a8c9ee2589e13f0cc8b6630cab
R[10] .output 8df4e9aacbc7573a27d8d055d6e4d64b

00112233445566778899aabbccddeeff --> 8df4e9aacbc7573a27d8d055d6e4d64b

A.3 Autres exemples de chiffrement AES-128

— Avec la clé par défaut :
00000000000000000000000000000000 ==> 7df76b0c1ab899b33e42f047b91bb46£f
3243f6a8885a308d313198a2e0370734 --> 3925841d02dc09fbdc118597196a0b32
— avec la clé K=00000000000000000000000000000000 :
3243f6a8885a308d313198a2e0370734 —--> e527936d049f88872a4903305b975bd1
— Avec la clé K=000102030405060708090a0BOCODOEOF
00112233445566778899%aabbccddeeff —-> 69c4e0d86a7b0430d8cdb78070b4ch55a

A.4 Chiffrement AES-192

On utilise ici la clé
K=000102030405060708090a0BOCODOEOF0111213141516171
avec le texte clair :

T = 00112233445566778899%aabbccddeeff

ENCRYPT - Mode AES-192, rounds r from O a 12

Legend

input : cipher input

start : state at start of round r

s_box : state after SBox substitution (SubBytes)
s_row : state after ShiftRows

mixcol : state after MixColumn
k_sch : key schedule value for round r
output : cipher output

17

PLAINTEXT : 00112233445566778899aabbccddeeff

KEY : 000102030405060708090a0b0c0d0e0£0111213141516171
R[00] .input 00112233445566778899aabbccddeeff
R[00] .k_sch 000102030405060708090a0b0c0d0e0f
**x Start rounds *x*

R[01] .start 00102030405060708090a0b0c0d0e0£0
R[01].s_box 63cab7040953d051cd60e0e7ba70e18c
R[01].s_row 6353e08c0960e104cd70b751bacadle?
R[01] .mixcol 5£72641557f5bc92f7be3b291db9f91a
R[01] .k_sch 0111213141516171d0eeal180d4eba7387
R[02] .start 5e63452416a4dde327509aa9c9525e9d
R[02].s_box 58fb6e364749¢c111cc53b8d3dd00585¢e
R[02].s_row 5849b85e47535836cc006e11ddfbcl1d3
R[02] .mixcol 8d4798a5153ffeaefc6£2303a5bbd1fb
R[02] .k_sch dce2ad8cd0efa383d1fe82b290afe3c3
R[03] .start 51a53529¢c5d05d2d2d91a1b135143238
R[03].s_box d10696a5a6704cd8d88132c896£a2307
R[03].s_row d1703207a68123a5d8fa96d896064cc8
R[03] .mixcol 1c60cc24497£9502f04e66b4b9864b60
R[03] .k_sch abff8fe07f142867a3£685eb73192668
R[04] .start b79f43c4366bbd6553b8e35fca9f6d408
R[04] .s_box a9dblalc057f7a4ded6c11cf74db3c30
R[04].s_row a97£1130056c3clceddbladd74db7act
R[04] .mixcol e954a4ee9e853567e023d5772b9811b8
R[04] .k_sch a2e7a4da32484719fd5f5bc3824b73a4
R[05] .start 4bb30034accd727e1d7c8eb4a9d3621c
R[05] .s_box b36d631891bd40£3a410198dd366aa9c
R[05].s_row b3bd199¢c9110aa18a46663£3d36d408d
R[05] .mixcol 24658349bb4ce622693e0a0fc744b242
R[05] .k_sch 21bdf64£5224d027£04374fdc20b33e4
R[06] .start 05d87506e9e83605997d7ef2054f81a6
R[06] .s_box 6b619d6f1e9b056beefff3896b840c24
R[06].s_row 6b9bf3241eff0c6fee849d6b6b610589
R[06] .mixcol b76c619d4580480fa62af6e6£92£80d0
R[06] .k_sch de9c32e65cd741427d6ab70d2fce672a
R[07] .start 69f0537b1957094ddb4041ebdbele7fa
R[07] .s_box £98ced21d45b01e3b90983e9f6£89424
R[07].s_row £95b832dd4099421b9f8ede3f68c01e9
R[07] .mixcol aafcc8921d408db8749dbe18901£5845
R[07].k_sch df8d13d71d8620338a2bf142d6£cb000
R[08] .start 7571db4500c6ad8bfeb64f5a46e3e845
R[08] .s_box 9da3b96e63b4953dbb4e84bebal19b6e
R[08] .s_row 9db4846e634e9b6ebb11b93d5aa395be
R[08] .mixcol 0c178850e127b2acda748404611d11bf
R[08] .k_sch ab96070d845860275bd573£0465353¢c3
R[09] .start a7818f5d657fd28b81al1f7£f4274e427c
R[09] .s_box 5c0c734c4dd2b53d0c3268bfcc2f2c10
R[09] .s_row 5cd268104d322c4c0c2f733dccOcbsbf
R[09] .mixcol ad4bbe7eacl11£35127fa82329daf6b93
R[09] .k_sch 47c6df18913a6f183aac6815bef40832

18

R[10] .start €a8db1663d2b9c491d56ea27235b63al

R[10] .s_box 875dc83327f1de3badb187cc2639fb32
R[10] .s_row 87£1873227b1fb33a439c83b265ddecc
R[10] .mixcol a8de35804e7b2e45ebaebb70b929936a
R[10] .k_sch eb5217bc2a372280147£f2a312d6c8ccla
R[11] .start 4dffd4ed42ed090644acbcf8626fe15£60
R[11].s_box e3162f2c55016f1b914a41aaa8f8cfd0
R[11] .s_row e€30141d0554acf2c91£82f1ba8166faa
R[11] .mixcol 4££f20bc597a7ee221e101a49b49£85d5
R[11] .k_sch ec64a41f5290ac2db7bld7ef14c3ffee
R[12] .start a396afdacb37420fafalcdaba05c7a3b
*% FinalRound **

R[12] .s_box 0a907957a69a2c76d332bd24e04adae?2
R[12] .s_row 0a9abde2a632da57d34a7976e0902c24
R[12] .k_sch €9e48be83f2c47e2d348e3£d81d84£fd0
R[12] .output e37e360a991e9db500029a8b614863f4

00112233445566778899aabbccddeeff —-> e37e360a991e9db500029a8b614863f4

A.5 Chiffrement AES-256

On utilise ici la clé
K=000102030405060708090a0BOCODOEOF01112131415161718191A1B1C1D1E1F1
avec le texte clair : T = 00112233445566778899aabbccddeeff

ENCRYPT - Mode AES-256, rounds r from O a 14

Legend

input : cipher input

start : state at start of round r

s_box : state after SBox substitution (SubBytes)
s_row : state after ShiftRows

mixcol : state after MixColumn

k_sch : key schedule value for round r

output : cipher output

PLAINTEXT : 00112233445566778899aabbccddeeff
KEY : 000102030405060708090a0b0c0d0e0£01112131415161718191alblcidlelfl
R[00] .input 00112233445566778899aabbccddeeff
R[00] .k_sch 000102030405060708090a0b0c0d0e0f
**x Start rounds *x*

R[01] .start 00102030405060708090a0b0c0d0e0£f0
R[01] .s_box 63cab7040953d051cd60e0e7ba70e18c
R[01].s_row 6353e08c0960e104cd70b751bacadle?
R[01] .mixcol 5f72641557f5bc92f7be3b291db9f91a
R[01].k_sch 01112131415161718191alblicidlelfl
R[02] .start 5e63452416a4dde3762£9a98dc6818eb
R[02] .s_box 58fb6e364749c1113815b8468645ade9
R[02].s_row 5849b8e94715ad3638456e1186fbc146
R[02] .mixcol 3af05ad02ab7491dc011924186752e27
R[02] .k_sch 3f£f9a37b3bfcab7c33f5af773f£8a178
R[03] .start 0509f9ab114bec61f3e43d36b98d8f5f

19

R[03]
R[03]
R[03]
R[03]

R[04].

R[04]
R[04]
R[04]
R[04]

R[05].

R[05]
R[05]
R[05]
R[05]

R[06].

R[06]
R[06]
R[06]
R[06]

R[07].

R[07]
R[07]
R[07]
R[07]
R[08]
R[08]
R[08]
R[08]
R[08]
R[09]
R[09]
R[09]

R[09].

R[09]
R[10]
R[10]
R[10]

R[10].

R[10]
R[11]
R[11]
R[11]

R[11].

R[11]
R[12]
R[12]
R[12]

R[12].

R[12]
R[13]
R[13]
R[13]

R[13].

.s_box
.s_row
.mixcol
.k_sch
start
.s_box
.s_row
.mixcol
.k_sch
start
.s_box
.S_row
.mixcol
.k_sch
start
.s_box
.S_row
.mixcol
.k_sch
start
.s_box
.S_row
.mixcol
.k_sch
.start
.s_box
.S_row
.mixcol
.k_sch
.start
.s_box
.S_row
mixcol
.k_sch
.start
.s_box
.S_row
mixcol
.k_sch
.start
.s_box
.S_row
mixcol
.k_sch
.start
.s_box
.S_row
mixcol
.k_sch
.start
.s_box
.S_Trow
mixcol

6b01996282b3ceef0d692705565d73cf
6bb327c£826973620d5d99ef5601ce05
£0b0Odcacbb5a7ab438be853166418df3f
7450138d350172fcb490d34d754132bc
84e0cf2180a6d9pf3£f7880501159ed83
bfel18afdcd24350875bccd3982cbb5ec
5f24cdeccdbcb5£d75cb8a0882e13539
£3b7d5cbfbacc7442e75a9¢ce2b3d423b
bedac6e68526639ab6d3cced892b6d95
4d6d132d738aa4de98a66523a2162fae
e33c7dd88f7e491d46244d263a4715e4
e37e4ded8f2415d846477d1d3a3c4926
£62c30dead20£f2102552dccabfbffe77
d3a12fa7e6a05d5b52308e162771bcaa
258d1£794280af4b776252dc78ce42dd
3£f5dc0b62ccd79p3£5aa0086bc8b2ccl
3fcd00c12caa2cb6£58bcO0b3bc5d7986
£37faa1527a11£8504102b327b0b82ec
19bf6a2a9c9909b02adacb5da361a8c8
eac0c03fbb3816352ebaecebfd86a2a24
87baba75ea07479631be28a86102e536
87072836eabee5753102ba9661bad7a8
02c78ad186cc1a944876fddcf86fb615
d94eed4f3feeb0146dde3e024aaf82a8
db89679eb922aa8025a8c3deb2c034bd
b9a7850b5693accd3fc22e1d37bal87a
b9932e7a56¢c2180b3fba85cd37a7acld
938c£899e2eab936e309d8f£2d90£468
68aca8fcf43b5aldcde7f64117d1leccd9
£b20506516df187a3d76bceeb508e38b1l
0fb7534d479eadda27386528531907c8
0£f9e65c84738074d271953dab53b7ad28
0a4f18618c73a66cec3aed8cele2ddbf
263cab67a19d2166e740c286c3ea3aacsd
2c73bel1b95a1b0029836c5e0df41777b
718faeaf2a32e7774605a6e19e83f521
713226212a05f5af4683ae779e8fe7el
33c¢c57745018b34cbcbcb51b09ab48£c08
7200b44e86351502584a71132554bdca
41c5c30b87be21c9938f6ala8elcdlc2
83a62e2b17aefddddc7302a2199c8325
83ae02251773832bdc9c2edd19a6fda2
d3e746781344049fef50606c9cf0a32f
191cdc0e00cecab074c2e20c4a6148c8
cafb9a76138aceff9b928260d691ebe7
740fb8387d7e8b16144f13d0f681e994
T47e13947d4fe9381481b816£60£8bd0
ed298bc2fafbb3511ec8c429bdbe9f3e
bd525c983b67499a632d388946798543
507bd75ac19cfacb7debfcalfbc71a7d
53210ebe78de2d1ff£d9b0e00f c6a2ff
53deb0f£78d9a2beffc60e1f0f212de0
90c0ec7e9c922794a56504ecb0dadfc6

20

R[13] .k_sch 432a4b144364817437a663787dc72bb0

R[14] .start d36aa76adff6a6e092c36794cd1d6476
*% FinalRound **

R[14].s_box 66025c029e4224e14f2e8522bda44338
R[14].s_row 664285389e2e43024fa45cel1bd022422
R[14] .k_sch 3ba3bb6700c4f2£d63e9ca7425904£37
R[14] .output 5de13e5f9eeablff2c4d969598926b15

00112233445566778899aabbccddeeff --> 5del3ebf9eeablff2c4d969598926b15

21

B Tables de correspondances entre ecritures polyno-
miales et exponentielles

// ExpoToPoly[k] donne la representation polynomiale de w(x) "k

// 0 est representer par w(x) 255 bien que mathematiquement, w”255=1

const int ExpoToPoly[256] = {
0x01, 0x03, 0x05, 0xO0f, Ox11, 0x33, 0xb5, Oxff, Oxla, 0Ox2e, 0x72, 0x96, Oxal,
0xf8, 0x13, 0x35, 0xbf, Oxel, 0x38, 0x48, 0xd8, 0x73, 0x95, Oxad4, Oxf7, 0x02,
0x06, 0x0Oa, Oxle, 0x22, 0x66, Oxaa, Oxeb, 0x34, 0Oxbc, Oxed4, 0x37, 0x59, Oxeb,
0x26, Ox6a, Oxbe, 0xd9, 0x70, 0x90, Oxab, Oxe6, 0x31, 0x53, 0xf5, 0x04, 0xOc,
0x14, 0x3c, 0x44, Oxcc, 0x4f, Oxdl, 0x68, 0xb8, 0xd3, O0x6e, 0xb2, Oxcd, Ox4c,
Oxd4, 0x67, 0xa9, 0Oxe0, 0x3b, 0x4d, 0xd7, 0x62, Oxa6, Oxf1l, 0x08, 0x18, 0x28,
0x78, 0x88, 0x83, 0x9%e, 0xb9, 0xd0, 0x6b, Oxbd, Oxdc, 0x7f, 0x81, 0x98, 0xb3,
Oxce, 0x49, 0Oxdb, 0x76, O0x9a, Oxbb, Oxc4, 0x57, 0xf9, 0x10, 0x30, 0x50, OxfO,
0xOb, Ox1d, 0x27, 0x69, Oxbb, 0xd6, 0x61, Oxa3, Oxfe, 0x19, 0x2b, 0x7d, 0x87,
0x92, Oxad, Oxec, 0x2f, 0x71, 0x93, Oxae, 0Oxe9, 0x20, 0x60, 0xa0O, Oxfb, 0x16,
0x3a, Ox4e, 0xd2, 0x6d, O0xb7, Oxc2, 0x5d, Oxe7, 0x32, 0x56, Oxfa, Ox15, 0x3f,
0x41, 0Oxc3, Oxbe, Oxe2, 0x3d, 0x47, 0xc9, 0x40, O0xcO, 0Oxbb, Oxed, Ox2c, 0x74,
0x9c, Oxbf, Oxda, 0x75, 0x9f, Oxba, Oxd5, 0x64, Oxac, Oxef, Ox2a, O0x7e, 0x82,
0x9d, Oxbc, 0Oxdf, Ox7a, Ox8e, 0x89, 0x80, 0x9b, 0xb6, Oxcl, 0x58, 0xe8, 0x23,
0x65, Oxaf, Oxea, 0x25, 0x6f, Oxbl, Oxc8, 0x43, Oxc5, 0xb4, Oxfc, Oxl1f, 0x21,
0x63, Oxab, 0xf4, 0x07, 0x09, Ox1b, 0x2d, 0x77, 0x99, 0xb0, Oxcb, 0x46, Oxca,
0x45, Oxcf, Ox4a, Oxde, 0x79, 0x8b, 0x86, 0x91, 0xa8, 0xe3, 0x3e, 0x42, 0xc6,
0x51, 0xf3, 0x0Oe, 0x12, 0x36, Oxba, Oxee, 0x29, 0x7b, 0x8d, 0x8c, 0x8f, 0x8a,
0x85, 0x94, Oxa7, 0xf2, 0x0d, Ox17, 0x39, 0Ox4b, Oxdd, O0x7c, 0x84, 0x97, Oxa2,
Oxfd, Oxlc, 0x24, 0x6c, Oxb4, Oxc7, 0x52, 0xf6, 0x01

};

// PolyToExpo[x] donne la puissance k de w telle que x=w"k,

// ou x est donne sous forme polynomiale

const int PolyToExpo[256] = {
oxff, 0x00, 0x19, 0x01, 0x32, 0x02, Oxla, Oxc6, 0x4b, 0Oxc7, Oxlb, 0x68, 0x33,
Oxee, Oxdf, 0x03, 0x64, 0x04, Oxe0, OxOe, 0x34, 0x8d, 0x81, Oxef, Ox4c, 0x71,
0x08, 0xc8, 0xf8, 0x69, Oxlc, Oxcl, 0x7d, Oxc2, Oxld, O0xb5, 0xf9, 0xb9, 0x27,
Ox6a, 0x4d, Oxe4, Oxa6, 0x72, Ox9a, Oxc9, 0x09, 0x78, 0x65, 0x2f, 0x8a, 0x05,
0x21, 0x0f, Oxel, 0x24, 0x12, 0xf0, 0x82, 0x45, 0x35, 0x93, Oxda, 0x8e, 0x96,
0x8f, Oxdb, Oxbd, 0x36, 0xd0, Oxce, 0x94, 0x13, Oxbc, 0xd2, Oxf1l, 0x40, 0x46,
0x83, 0x38, 0x66, Oxdd, Oxfd, 0x30, Oxbf, 0x06, 0x8b, 0x62, 0xb3, 0x25, 0xe2,
0x98, 0x22, 0x88, 0x91, 0x10, 0x7e, Ox6e, 0x48, 0xc3, 0xa3, 0xb6, Oxle, 0x42,
0x3a, 0x6b, 0x28, 0x54, Oxfa, 0x85, 0x3d, Oxba, 0x2b, 0x79, 0x0a, Ox15, 0x9Db,
0x9f, Oxbe, Oxca, Ox4e, Oxd4, Oxac, Oxeb, 0xf3, 0x73, Oxa7, 0x57, Oxaf, 0x58,
Oxa8, 0x50, 0xf4, Oxea, Oxd6, 0x74, Ox4f, Oxae, 0Oxe9, 0xd5, Oxe7, Oxe6, Oxad,
0xe8, 0x2c, 0xd7, 0x75, Ox7a, Oxeb, 0x16, 0xOb, O0xf5, 0x59, Oxcb, 0x5f, 0xbO,
0x9c, 0Oxa9, 0xb1, 0xa0O, 0x7f, 0xOc, Oxf6, Ox6f, 0x17, Oxc4, 0x49, Oxec, 0xd8,
0x43, Ox1f, 0x2d, Oxa4, 0x76, 0x7b, 0xb7, Oxcc, Oxbb, 0x3e, Oxba, Oxfb, 0x60,
0Oxb1l, 0x86, 0x3b, 0x52, Oxal, Ox6c, Oxaa, 0xb55, 0x29, 0x9d, 0x97, Oxb2, 0x87,
0x90, 0x61, Oxbe, Oxdc, Oxfc, Oxbc, 0x95, Oxcf, Oxcd, 0x37, 0x3f, Oxbb, Oxdil,
0x53, 0x39, 0x84, 0x3c, 0x41, Oxa2, 0x6d, 0x47, 0x14, 0x2a, 0x9e, 0xbd, 0x56,
0xf2, 0xd3, Oxab, 0x44, 0Ox11, 0x92, 0xd9, 0x23, 0x20, 0x2e, 0x89, 0Oxb4, 0x7c,
0xb8, 0x26, 0x77, 0x99, 0Oxe3, Oxab, 0x67, Ox4a, Oxed, Oxde, Oxch5, 0x31, Oxfe,
0x18, 0x0d, 0x63, 0x8c, 0x80, 0xcO, O0xf7, 0x70, 0xO07

22

C Détail de la boite-S et son inverse

/* La fameuse Boite-S */

const F256 SBox[256] = {
0x63, 0x7C, 0x77, 0x7B, OxF2, 0x6B, O0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, OxFE,
0xD7, OxAB, 0x76, O0xCA, 0x82, 0xC9, 0x7D, OxFA, 0x59, 0x47, OxFO, OxAD, 0xD4,
0OxA2, OxAF, 0x9C, 0OxA4, 0x72, 0xCO, O0xB7, OxFD, 0x93, 0x26, 0x36, 0x3F, OxF7,
0xCC, 0x34, OxA5, OxE5, OxF1, 0x71, 0xD8, 0x31, 0x15, 0x04, 0xC7, 0x23, 0xC3,
0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, OxE2, OxEB, 0x27, 0xB2, 0x75, 0x09,
0x83, 0x2C, Ox1A, 0x1B, Ox6E, Ox5A, OxAO, 0x52, 0x3B, 0xD6, 0xB3, 0x29, OxE3,
0x2F, 0x84, 0x53, 0xD1, 0x00, OxED, 0x20, OxFC, 0xB1, 0x5B, O0x6A, 0xCB, OxBE,
0x39, Ox4A, 0x4C, 0x58, 0xCF, 0xDO, OxEF, OxAA, OxFB, 0x43, 0x4D, 0x33, 0x85,
0x45, OxF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8, 0x51, O0xA3, 0x40, Ox8F, 0x92,
0x9D, 0x38, 0OxF5, 0xBC, 0xB6, OxDA, 0x21, 0x10, OxFF, 0xF3, 0xD2, 0xCD, 0xO0C,
0x13, OxEC, OxbF, 0x97, 0x44, 0x17, 0xC4, OxA7, Ox7E, 0x3D, 0x64, 0x5D, 0x19,
0x73, 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, OxEE, 0xB8, 0x14,
OxDE, Ox5E, 0xOB, 0xDB, OxEO, 0x32, Ox3A, O0xOA, 0x49, 0x06, 0x24, 0x5C, 0xC2,
0xD3, OxAC, 0x62, 0x91, 0x95, OxE4, 0x79, OxE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5,
0x4E, 0xA9, 0x6C, 0x56, OxF4, OxEA, 0x65, 0x7A, OxAE, 0x08, OxBA, 0x78, 0x25,
0x2E, 0x1C, OxA6, 0xB4, 0xC6, OxE8, 0xDD, 0x74, Ox1F, 0x4B, 0xBD, 0x8B, Ox8A,
0x70, Ox3E, 0xB5, 0x66, 0x48, 0x03, OxF6, OxOE, 0x61, 0x35, 0x57, 0xB9, 0x86,
0xC1, Ox1D, Ox9E, OxE1l, OxF8, 0x98, Ox11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, Ox1E,
0x87, O0xE9, O0xCE, 0x55, 0x28, OxDF, 0x8C, OxAl1, 0x89, 0x0D, OxBF, OxE6, 0x42,
0x68, 0x41, 0x99, 0x2D, O0xOF, 0xBO, 0x54, 0OxBB, 0x16

};

/* la boite-S inverse */

const F256 InvSBox[256] = {
0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, OxA5, 0x38, O0xBF, 0x40, O0xA3, O0x9E, 0x81,
0xF3, 0xD7, OxFB, 0x7C, OxE3, 0x39, 0x82, 0x9B, 0x2F, OxFF, 0x87, 0x34, Ox8E,
0x43, 0x44, 0xC4, OxDE, OxE9, 0xCB, 0x54, 0x7B, 0x94, 0x32, O0xA6, 0xC2, 0x23,
0x3D, OxEE, 0x4C, 0x95, 0x0B, 0x42, OxFA, 0xC3, 0x4E, 0x08, 0x2E, OxAl1l, 0x66,
0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, OxA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25, 0x72,
0OxF8, OxF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65,
0xB6, 0x92, 0x6C, 0x70, 0x48, 0x50, OxFD, OxED, 0xB9, OxDA, OxbE, 0Ox15, 0x46,
0x57, OxA7, 0x8D, 0x9D, 0x84, 0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0xOA,
OxF7, OxE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06, 0xDO, 0x2C, Ox1E, O0x8F, OxCA,
0x3F, 0xOF, 0x02, 0xC1l, OxAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B, Ox3A, 0x91,
Ox11, Ox41, O0x4F, 0x67, 0xDC, OxEA, 0x97, OxF2, 0xCF, 0xCE, OxFO, OxB4, OxE6,
0x73, 0x96, OxAC, 0x74, 0x22, O0xE7, OxAD, 0x35, 0x85, OxE2, OxF9, 0x37, OxE3,
0x1C, 0x75, OxDF, Ox6E, 0x47, OxF1, Ox1A, Ox71, Ox1D, 0x29, 0xC5, 0x89, Ox6F,
0xB7, 0x62, 0xOE, OxAA, 0x18, OxBE, 0x1B, OxFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2,
0x79, 0x20, 0x9A, 0xDB, 0xCO, OxFE, 0x78, 0xCD, Ox5A, OxF4, Ox1F, 0xDD, OxA8,
0x33, 0x88, 0x07, 0xC7, 0x31, OxB1, 0x12, 0x10, 0x59, 0x27, 0x80, OxEC, Ox5F,
0x60, 0xb51, Ox7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, OxE5, Ox7A, Ox9F, 0x93,
0xC9, 0x9C, OxEF, 0xAO, OxEO, Ox3B, 0x4D, OxAE, 0x2A, OxF5, 0xBO, 0xC8, OxEB,
0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2B, 0x04, O0x7E, OxBA, 0x77, 0xD6,
0x26, OxE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D

23

Références

[Can03]
[Cas9g]

[DRIS]

[DRO1]

[FS03]
[Kob9s]
[KRSS]

[MVO96]

[Pil04]

[PKPO3]
[Sch97]

[Ste90]

[Sti02]

[Var05]

Anne Canteaut. "Programmation en Langage C”. INRIA - projet
CODES, 2003.

Bernard Cassagne. "Introduction au Langage C”. Laboratoire CLIPS
UJF/CNRS, 1997-1998.

Joan Daemen and Vincent Rijmen. AES Proposal : Rijndael. Tech-
nical report, 1998. http://citeseer.ist.psu.edu/daemen98aes.
html.

Joan Daemen and Vincent Rijmen. The Design of Rijndael.
Springer-Verlag, 1st edition, 2001. http://www.iaik.tu-graz.ac.
at/research/krypto/AES/.

Niels Ferguson and Bruce Schneier. Practical Cryptography. Wiley
Publishing, Inc, 1st edition, 2003. http://www.macfergus.com/pc/.

Neal Koblitz. Algebraic Aspects of Cryptography, volume 3 of Algo-
rithms and Compuitation in Mathematics. Springer-Verlag, 1998.

B.W. Kernighan and D.M. Ritchie. The C' Programming Language.
Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1988. 2nd edition.

Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot.
Handbook of Applied Cryptography. Computer Sciences Applied Ma-
thematics Engineering. CRC Press, Inc., 1st edition, 1996. http:
//www.cacr.math.uwaterloo.ca/hac/.

Jean-Francois Pillou. Introduction au Langage C++. Technical re-
port, Tutorial, Encyclopédie Informatique Libre, 2004. http://wuw.
commentcamarche.net/cpp/cppintro.php3.

Peter Prinz and Ulla Kirch-Prinz. C Pocket Reference. O’Reilly &
Associates, 2003.

Bruce Schneier. “Cryptographie Appliqguée”. Vuibert, Wiley and In-
ternational Thomson Publishing, NY, 2nd edition, 1997. .

David Stevenson. "IEEE Std 754-1985 IEEE Standard for Binary
Floating-Point Arithmetic”. Technical report, IEEE Standards Asso-
ciation, 1990.

Douglas R. Stinson. Cryptography : Theory and Practice. Chap-
man & Hall/CRC Press, 2nd edition, 2002. http://www.cacr.math.
uwaterloo.ca/ dstinson/CTAP2/CTAP2.html.

Sébastien Varrette. Cours de programmation avancée : le langage C.
Université du Luxembourg, janvier 2005. http://www-id.imag.fr/
“svarrett/.

24

