Université du Luxembourg 20042005

D.U.T. Informatique 2€Me année mardi 8 mars

PROGRAMMATION AVANCEE EN LANGAGE C—l——|—
EXAMEN N° 1

Sebastien.Varrette@imag.fr (Bureau BR.4.07)
Durée: 2 heures

Calculatrice interdite - Documents interdits

1l sera tenu compte dans la notation de la clarté des explications et du soin
apporté a la rédaction (propreté, organisation, respect de la langue francaise).
Le baréeme n’est fourni qu’a titre indicatif.

]. Makeﬁle (parce que je vous ’avais promis...) (4,5 ptS)

On suppose le développement d’un projet selon I'arborescence suivante :

ARBORESCENCE GRAPHE DES DEPENDANCES
() projet [ |
! toto
() include/
[ ENE
[:D ; main.o Matrix.o
obj/

i ———D Matrix.o

main.cpp Matrix.h  Matrix.cpp

FIGURE 1 — Arborescence et graphe de dépendances entre les fichiers

On souhaite donc générer I'exécutable toto. Les fichiers de header sont placés
dans le répertoire include/ tandis que les fichiers objets générés a la compila-
tions seront placés dans le répertoire obj/.
— Le fichier main. cpp contient la fonction main() :
/* Fichier : main.cpp */
#include "Matrix.h"

iﬁé main() {

}

— Le fichier Matrix.h contient un ensemble de classes permettant la gestion
de matrices. Ces classes sont notamment utilisées dans le cadre du projet
toto. L’en-téte de ce fichier est la suivante :

/* Fichier : Matrix.h */
#ifndef __MATRIX_H
#define __MATRIX_H



#endif

— enfin, le fichier Matrix.cpp contient le corps des méthodes et des fonc-
tions dont le prototype est annoncé dans Matrix.h. Son allure est la
suivante :
/* Fichier : Matrix.cpp */
#include "Matrix.h"

1. (0,75 pt) Expliquer brievement l'intérét général de I'utilisation de la di-
rective #ifndef dans un fichier de header.

2. (1 pt) On suppose vouloir compiler le projet ”"a la main”. Décrire et
expliquer les commandes successives nécessaires a la génération de ’exé-
cutable.

3. On souhaite maintenant utiliser 'outil Makefile pour se faciliter la tache.
(a) (0,5 pt) Expliquer I'intérét de cet outil.
(b) (2 pts) Ecrire le contenu du fichier Makefile permettant de gérer les
dépendances et la compilation de ’exécutable toto.

(¢) (0,25 pt) Quelle commande allez-vous désormais utiliser pour lancer
la compilation ?

2 PrOblémeS de références (parce que c’est important) (1 pt)

Qu’affiche le programme suivant ?

int i = 14;

cout << i << endl;
int & ref_i = i;
ref_i = 4;

cout << i << endl;

3 Le jeu de ].a Vie (parce que c’est fun) (14,5 ptS)

Le but de cet exercice est I’écriture d’'un programme permettant d’exécuter le
célebre "jeu de la vie”. Ce jeu consiste a faire évoluer un ensemble de cellules
réparties sur une grille rectangulaire découpée en cases. Chaque case contient
une cellule qui peut étre dans deux états : soit active, soit inactive. Chaque
cellule possede 3, 5 ou 8 voisines.

A chaque cycle, I'état de toutes les cellules est évalué simultanément et elles
évoluent comme suit :

Regle 1 : une cellule inactive s’active si elle est entourée d’exactement 3
cellules actives ;

Regle 2 : une cellule active ne survit que si elle est entourée de 2 ou 3
cellules actives (et devient inactive sinon).

La figure 2 fournit un exemple d’évolution sur 2 cycles (la situation d’arrivée
est stable). Pour déterminer I’état au cycle i + 1 a partir de 1’état au cycle i, on
proceéde comme suit :



@ : Cellule active

 J
—_— { AN J —_— ( AN J
(BN e e [ [
{ { AN J ( AN J
Cycle 0 Cycle 1 Cycle 2

FIGURE 2 — Le jeu de la vie : exemple d’évolution sur 2 cycles.

1. Pour chaque cellule active au cycle 7, déterminer celles qui survivent en
appliquant la régle (2);

2. Pour chaque cellule inactive au cycle ¢, déterminer celles qui s’activent,
en utilisant la configuration du cycle i en appliquant la regle (1).

Pour programmer ce probleme, nous allons modéliser les cellules par des objets
de la classe Cell. La grille de cellule sera représentée par un objet de la classe
Environment. Enfin, une classe GameOfLife gerera 1’évolution de l’environne-
ment dans le cadre du jeu de la vie.

Chaque définition de classe fait I'objet d’une partie de cet exercice. Bien en-
tendu, si vous bloquez sur une question qui demande la réalisation d’une fonc-
tion, vous pouvez supposer cette fonction réalisée pour continuer I’exercice.

3.1 La classe Cell (3,5 pts)
Pour caractériser 1’état d’une cellule, on utilisera I’énumération :
enum CELL_STATE {INACTIVE, ACTIVE};

La classe Cell possede un seul attribut privé, son état (champ _state). Le
constructeur de cette classe place la cellule créée dans I’état INACTIVE par dé-
faut.
De plus, la classe Cell implémente les méthodes suivantes :
— bool isActive() : () permet de savoir si une cellule est active ou non;
— void setActive() : (%) permet d’activer une cellule;
— void setInactive() : (x) permet de désactiver une cellule;
— void print() : affiche un caractere caractérisant 1’état de la cellule. Par
convention, on utilisera le caractere diese '# pour afficher une cellule
active et le caractere espace ’ ’ pour une cellule inactive.

1. (1,5 pts) Définir la classe Cell. On veillera & ne définir qu'un seul

constructeur par défaut ainsi qu'un constructeur par recopie. On uti-
lisera dans les deux cas une liste d’initialisation.
IMPORTANT : Les méthodes marquées par un astérisque x seront défi-
nies directement dans la définition de la classe. Pour la méthode print,
on se contentera du prototype, son corps étant défini dans les questions
suivantes.



2. (0,5 pt) Les méthodes définies directement dans une classe sont inline.
Que signifie ce terme ? Quel est I'intérét de cette approche ?

3. Dans l'optique de 'affichage, on souhaite définir les constantes globales
INACTIVE_CHAR et ACTIVE_CHAR (correspondant aux caracteres utilisés
pour caractériser I’état d’une cellule selon qu’elle soit active ou pas).

(a) (0,5 pt) Définir ces deux constantes, en les initialisant aux valeurs
choisies par convention.

(b) (1 pt) Définir la méthode print en utilisant ces deux constantes.

3.2 La classe Environment (5,5 pts)

Un objet de la classe Environment sera caractérisé par sa hauteur h, sa largeur

[ et un tableau de h x [ éléments de types Cell.
On fournit la définition de la classe Environment :

class Environment {
typedef Cell * Cellline; // redéfinition d’un type ligne de cellule
// propre a la classe Environment

Cellline * _CellGrid; // grille de cellule

unsigned int _h; // hauteur : nombre de lignes

unsigned int _1; // largeur : nombre de colonnes
public:

/**x Constructeur - Destructeur **x/
Environment (unsigned int h = 5, unsigned int 1 = 5);
Environment (const Environment & env); // constructeur par recopie
“Environment () ;
/*** Accesseur - mutateur **x/
unsigned int getH() const { return _h; }
unsigned int getL() const { return _1;
void setH(unsigned int h) { _h = h;
void setL(unsigned int 1) { _1 = 1;
/*** Autres Methodes **x*/
// récupére la cellule en position (x,y)
Cell getCellAtPosition(unsigned int x, unsigned int y) const
{ return _CellGrid[y]l[x]; 2}
// rend active/inactive la cellule en position (x,y)
void setActiveAtPosition(unsigned int x, unsigned int y)
{ _CellGridl[y] [x].setActive(); }
void setInactiveAtPosition(unsigned int x, unsigned int y)
{ _CellGridl[y] [x] .setInactive(); }
// permet de savoir si la cellule en position (x,y) est active ou non
bool isActiveAtPosition(unsigned int x, unsigned int y)
{ return _CellGrid[y] [x].isActive(); }
// renvoit le nombre de cellules actives parmi les voisines de (x,y)
short numberOfActiveNeighbours(unsigned int x, unsigned int y);
// pour 1’affichage
void print();

1. (1 pt) Définir le constructeur par défaut de la classe Environment. Par
convention, toutes les cellules de I’environnement seront inactives.



2. (1 pt) Définir le constructeur par recopie de la classe Environment.
3. (1 pt) Définir le destructeur de la classe Environment.

4. (1,5 pts) Définir la méthode numberOfActiveNeighbours qui, pour une
position (x,y) donnée sur la grille, renvoit le nombre de cellules actives
parmi les voisines ! de la cellule en (x,y).

5. (1 pt) Définir la méthode print qui affiche ’environnement et ’état des
cellules qu’il contient.

3.3 La classe GameOfLife (5,5 pts)

La classe GameOfLife ne contient qu’un seul attribut privé : un environne-
ment _env. Le constructeur de cette classe recoit donc deux parametres de type
unsigned int : la largeur et la hauteur de cet environnement.
En outre, cette classe dispose des méthodes publiques suivantes :
— void randomInit() : initialise I’environnement ; l’état des cellules qui
le compose est tiré aléatoirement.
— void execute(unsigned int nbSteps) : exécute le jeu de la vie pen-
dant nbSteps cycles et affiche 'environnement apres chaque cycle.
Enfin, la méthode privée void _executeOneCycle() execute un seul cycle du
jeu de la vie. Toutes les cellules évoluent simultanément.

1. (0,5 pt) Définir la classe GameOfLife. Pour toutes les méthodes, on se
contentera de déclarer leur prototype sauf pour le constructeur dont le
corps sera défini directement (& ’aide d’une liste d’initialisation).

2. (1 pt) Définir la méthode randomInit. On utilisera pour cela la librairie
C <stdlib.h> qui fournit les fonctions srand (qui permet d’initialiser le
générateur aléatoire) et rand (qui fournit une valeur aléatoire uniformé-
ment distribuée entre 0 et RAND_MAX).

On pourra initialiser le générateur aléatoire de la fagon suivante :

#include <stdlib.h>
#include <time.h>

void GameOfLife::randomInit() {
srand(time (NULL)); // initialisation du générateur aléatoire.

3

Ensuite, on peut remarquer que (double)rand () /RAND_MAX est un nombre
réel compris entre 0 et 1. On pourra donc utiliser la fonction suivante
qui renvoit un état de cellule aléatoire :

CELL_STATE getRandState() {
return ((double)rand()/RAND_MAX < 0.5)7INACTIVE:ACTIVE;
}

3. (3 pts) Définir la méthode _executeOneCycle.
4. (1 pt) Définir la méthode execute.

FIN bravo !

1. On rappelle que selon les valeurs de x et y, une cellule a 3, 5 ou 8 voisines.



