
Master MICS: Parallel and Grid Computing Lecture

Reminding nearly all C++ in a single exercise : Templates,

Operator Overloading, STL, Boost ...

S. Varrette, V.Plugaru and P. Bouvry
<Firstname.Lastname@uni.lu>

Version 1.1

Resources:

• C++ Reference
• SGI Programmer’s Guide of STL
• Boost C++ libraries
• Doxygen: Source code documentation generator tool
• Eigen

Exercise 1 A simple generic matrix interface

The objective of this exercice is to propose an basic yet flexible interface to deal with matrix
operations. Every aspects of C++ will be highlighted.

Part I — Preliminary

Prepare your working environment with Doxygen support (for documentation generation).
Kindly pay attention to your code writing convention, in particular to integrate Doxygen com-
ments at the same time you program.
You are encouraged to use CMake. You can adapt and inspire from the following CMakeLists.txt:

# -*- mode: cmake -*-
#
# [CMake](http://www.cmake.org/) Configuration
#
cmake_minimum_required (VERSION 2.8.12)
project (TutorialMatrixSTL CXX)

# Rely on C++11
SET(CMAKE_CXX_STANDARD 11)
SET(CMAKE_CXX_FLAGS -std=c++11 )

#====== [Boost](http://www.boost.org/) ======
find_package(Boost COMPONENTS random program_options timer system REQUIRED)
include_directories(SYSTEM ${Boost_INCLUDE_DIRS})
list(APPEND EXTRALIBS ${Boost_LIBRARIES})

#======== [Eigen](http://eigen.tuxfamily.org/) ====================
find_package(Eigen REQUIRED)
include_directories(${EIGEN_INCLUDE_DIRS})

# Sources of the main executable
set(matrix_HEADERS Tools.h Matrix.h SquareMatrix.h)

add_executable(matrix_stl main.cpp ${matrix_HEADERS})
target_link_libraries(matrix_stl ${EXTRALIBS})

1

<Firstname.Lastname@uni.lu>
http://www.cplusplus.com/reference/
http://www.sgi.com/tech/stl/table_of_contents.html
http://www.boost.org/
http://www.stack.nl/~dimitri/doxygen/
http://eigen.tuxfamily.org/
http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/
http://www.cmake.org/


If you do not want to use CMake, prepare a Makefile able to compile your code, oth-
erwise the lecturers WON’T CORRECT your assignment. Also, your main application
(matrix_stl in the below example) should fulfill at least the following command-line op-
tions:

$> ./matrix_stl -h
Assignment Matrix / STL, by

<Lastname> <Firstname> <StudentID>
Available options:
-h [ --help ] Display this help message
-v [ --verbose ] Verbosity level
--repeat arg (=1) Repeat each test <arg> times
-m [ --rows ] arg (=3) Number of rows
-n [ --cols ] arg (=4) Number of columns
-r [ --random ] Initialize the matrix with random values
--min arg (=-10) Minimal value for the random values
--max arg (=10) Maximal value for the random values

An easy way to implement such options is to rely on Boost Program Options.

On the UL HPC platform, you’ll need to load a certain number of modules, and run the CMake
build using:

$> module load toolchain/ictce devel/Boost devel/CMake math/Eigen
$> cd build
$> cmake ../src -DBOOST_ROOT=${EBROOTBOOST} -DEIGEN_INCLUDE_DIR=${EBROOTEIGEN}/include

Part II — Generic m-by-n dense matrix inMm,n

This part propose to define a templated class Matrix<T> that handles m-by-n dense matrix
belonging to Mm,n such as:

M =


a0,0 a0,1 . . . a0,n−1

a1,0 a1,1 . . . a1,n−1
...

...
. . .

...
am−1,0 am−1,0 . . . am−1,n−1


where ai,j belongs to a given type T that support classical operations (+, -, *, << etc.)

1. Define a dedicated exception class (MatrixRuntimeError) to be throwned in case
of runtime error when using our Matrix class. Your class will have to inherit from
std::runtime_error.

The proposed interface for the Matrix class is the following:

template <class T>
class Matrix {

/* Some friend operators (implemented as non-member functions) */
template <class U> friend
std::ostream& operator<<(std::ostream& os, const Matrix<U> & M);
// /!\ inefficient prototypes for the following operators
template <class U> friend /* Addition */
Matrix<U> operator+(const Matrix<U> & M1, const Matrix<U> & M2);
template <class U> friend /* Soustraction */

10 Matrix<U> operator-(const Matrix<U> & M1, const Matrix<U> & M2);
template <class U> friend /* Multiplication */
Matrix<U> operator*(const Matrix<U> & M1, const Matrix<U> & M2);

2

http://www.cmake.org/
http://www.boost.org/doc/libs/1_57_0/doc/html/program_options.html
http://hpc.uni.lu
http://www.cmake.org/


template <class U> friend /* Transpose */
Matrix<U> operator~(const Matrix<U> & M);
// --------------------------------------------

public:
const size_t rows; /**< number of columns */
const size_t cols; /**< number of rows */

protected:
20 std::vector<T> _container; /**< The actual container */

// --------------------------------------------

public:
// Constructors / Destructors
Matrix(const size_t m = 2, const size_t n = 2);
Matrix(const Matrix<T> & M) :

rows(M.rows), cols(M.cols), _container(M._container) {}
Matrix(const std::vector<T> & v, const size_t m, const size_t n):

rows(m), cols(n), _container(v) { assert (m*n == v.size()); }
30 template <int R, int C>

Matrix(const Eigen::Matrix <T,R,C>& M);
virtual ~Matrix() {}

// Assignment (eventually with elements assigned the same constant)
Matrix<T> & operator=(const Matrix<T> & M);
template <int R, int C>
Matrix<T> & operator=(const Eigen::Matrix <T,R,C> & M);
Matrix<T> & operator=(const T & val);

40 // comparison
bool operator==(const Matrix<T>& M) const;
bool operator==(const ublas::matrix <T> & M) const;
template <int R, int C>
bool operator==(const Eigen::Matrix <T,R,C> & M) const;
bool operator!() const { return iszero(); }

// Accessor
// get M(i,j)
const T & operator() (const size_t i, const size_t j) const;

50 T & operator() (const size_t i, const size_t j);
const T & operator[] (const size_t i) const { return _container[i]; }
T & operator[] (const size_t i) { return _container[i]; }
const T * data() const { return _container.data(); }
T * data() { return _container.data(); }
std::vector<T> row(const size_t i) const;
//typename std::vector<T> col(const size_t j) const;

// Iterators
typename std::vector<T>::iterator begin() { return _container.begin(); }

60 typename std::vector<T>::const_iterator begin() const{ return _container.begin();}
typename std::vector<T>::iterator begin(const size_t i);
typename std::vector<T>::const_iterator begin(const size_t i) const;
typename std::vector<T>::iterator end() { return _container.end(); }
typename std::vector<T>::const_iterator end() const { return _container.end(); }
typename std::vector<T>::iterator end(const size_t i);
typename std::vector<T>::const_iterator end(const size_t i) const;

/**
* @return number of T elements in this matrix

70 */
size_t size() const { return rows * cols; }
/**

3



* Check if the matrix is null (i.e. composed by only O elements)

*/
bool iszero() const;
// ==== Generator / fill functions ===
/**
* Assignement of the elements to incremented values (using std::iota)

*/
80 void generate();

/**
* Assignement of the elements to a value val (using std::fill)

*/
void generate(const T & val);
/**
* Assignement of the elements to random values (using std::generate)

* @param gen Functor to the random generator to be used

*/
template<class RandomGenerator> void generate(RandomGenerator gen);

90 /**
* Transpose the matrix

*/
Matrix<T> transpose() const;
// ==== Printing functions ====
/**
* Print the j-th column to the output stream s_out

*/
std::ostream & printColumn(const size_t j = 0,

std::ostream &s_out = std::cout) const;
100 /**

* Print the i-th row to the output stream s_out

*/
std::ostream & printRow(const size_t i=0, std::ostream &s_out = std::cout) const;
/**
* Print the content of the Matrix to the output stream s_out

*/
virtual std::ostream & print(std::ostream & s_out = std::cout) const;

}; // ============ end class Matrix ===================

2. (Matrix constructor) Implement the default constructor such that an exception is throwned
if either m or n is equal to 0 i.e. if the matrix is degenerated.

3. Why having made the destructor of the Matrix class virtual ?

4. (Matrix printing) Implement the methods printRow, printColumn and print.

a) Explain why those methods should be const

b) Use these methods to implement the function

template <class U> friend
std::ostream& operator<<(std::ostream& os, const Matrix<U> & M);

5. (Matrix accessors M(i,j)) Implement the accessors operators

template<class T>
inline const T & Matrix<T>::operator()(const size_t i, const size_t j) const;
template<class T>
inline T & Matrix<T>::operator() (const size_t i, const size_t j);

a) What is the purpose of the inline keyword?

b) Explain why there should exist two versions for these accessors.

6. (Matrix iterators) Implement the method permitting to retrieve iterators at the beginning
(resp. the end) of the i-th row of the matrix i.e.

4



typename std::vector<T>::iterator begin(const size_t i);
typename std::vector<T>::const_iterator begin(const size_t i) const;

typename std::vector<T>::iterator end(const size_t i);
typename std::vector<T>::const_iterator end(const size_t i) const;

a) Explain why the typename keyword is mandatory.
b) Explain why two versions of each methods should be defined.

7. * Implement the three generate methods, using respectively the following STL algo-
rithms

a) std::iota
b) std::fill
c) std::generate

8. *** This question is dedicated to the definition of two classes Generator and RealGenerator
(belonging to the namespace Random) used to generate random objects using the Boost
C++ libraries.

a) Ensure that the Boost C++ libraries are installed.
b) Try and test the use of the Boost Random Number Library. Adapt your Makefile

(or CMakeLists.txt) accordingly.
c) We assume here a type T for which there exists a constructor that takes an integer

argument (of type IntType). Note that this holds for any integer type (such as int
or unsigned long) but also for any class that match this kind of implementation:

template<class IntType = int>
class T {
public:
T(const IntType & val); // constructor with an integer argument
...

};

Implement the generator class Random::Generator that make use of the Boost
Random library to generate random elements of type T (by calling the constructor
of T on uniformly chosen integers). You will typically use the following interface:

#include <boost/random.hpp>
namespace Random {
template<class T,

class IntType = int,
class Engine = boost::mt19937>

class Generator {
typedef /* TO BE COMPLETED */ distribution_t;
distribution_t _dist; /**< type of distribution */

public:
Generator(const IntType & min = IntType(0),
const IntType & max = IntType(100));
virtual ~Generator() {}
IntType min() const { return _dist.min(); }
IntType max() const { return _dist.max(); }
T operator()();

};
}; // namespace Random

d) We assume now a type T for which there exists a constructor that takes a real
number argument (of type RealType). This holds for any real number type (such
as float or double) but also for any class that match this kind of implementation:

template<class RealType = double>
class T {

5

http://www.boost.org/
http://www.boost.org/
http://www.boost.org/
http://www.boost.org/doc/libs/1_52_0/doc/html/boost_random.html


public:
T(const RealType & val); // constructor with an real number argument
...

};

Use the same approach expounded in the previous question to implement a class
Random::RealGenerator as follows:

#include <boost/random.hpp>
namespace Random {
template<class T,

class RealType = double,
class Engine = boost::mt19937>

class RealGenerator {
/* ... */

};

e) Test both classes, first on traditional vectors (std::vector), then over the method

template<class T>
template<class RandomGenerator>
void Matrix<T>::generate(RandomGenerator gen);

f) Adapt your main application (and the command-line options) to generate and print
a random matrix using the previous methods.

9. (Matrix assignment by the ’=’ operator)
a) Implement the method

template<class T>
Matrix<T> & Matrix<T>::operator=(const Matrix<T> & M);

In particular, ensure the dimention are correct (or throw an exception) and deal
with auto-assignment instructions (i.e M = M).

b) Implement the variant

template<class T>
inline Matrix<T> & Matrix<T>::operator=(const T & val);

where all elements are assigned the value val.
Whereas you could use the Matrix<T>::generate(val) method, propose an
alternative approach based on std::vector<T>::assign()

10. (Matrix comparison)
a) Implement the operator == :

template<class T>
bool operator==(const Matrix<T>& M) const;

b) ** We now study three versions of the method iszero(), all based on the STL
find_if algorithm and:

i – using a predicate isNonZero (to be defined).
ii – using a predicate isZero (to be defined) and the STL negator std::not1
iii – using the STL operator class std::not_equal_to and the STL parameter

binder std::bind2nd
c) Why is it important to make all your defined predicates derive from the STL function

objects std::unary_function<Arg,Res> or
std::binary_function<Arg1,Arg2,Res> ?

d) * Assuming it is not the case, how would you use a classical function as a predicate?
Validate this approach on the iszero method implementation.
Hint: take a closer look at the STL conversor std::ptr_fun.

6



11. (Matrix arithmetic operators) *

a) Why arithmetic operators are proposed as non-member function instead of member
methods?

b) Propose a basic implementation for the operators * and ~ (i.e. nested for loops)

c) * Implement the + and - operators using the STL std::transform algorithm.
You’ll also consider the STL operator classes std::plus and std::minus.

d) ** Explain why the proposed implementation is considered inefficient. How would
you improve it? Propose a new implementation.
Hint: take a closer look at the returned type.

12. (Matrix arithmetic operators benchmarking) *** The objective is now to benchmark your
implementation for various matrix size and to compare your results with the general im-
plementations proposed in the literature, in particular Eigen and Boost uBLAS library.

a) Prepare a timer for your application using boost::timer::cpu_timer (see Boost
CPU timer), which permit to measure both the wallclock and the cpu time.

b) To be statistically significant, the benchmarked results will need to be repeated over
multiple random matrices (see the -repeat command-line option).
Adapt your code to integrate a statistical accumulator accumulator_set<> – see
Boost Accumulator:

#include <boost/accumulators/accumulators.hpp>
#include <boost/accumulators/statistics/stats.hpp>
#include <boost/accumulators/statistics/mean.hpp>
using namespace boost::accumulators;
typedef accumulator_set<long double, features<tag::mean> > accumulators_t;

c) Benchmark your implementation for the following operations: addition, subtraction,
transposition and multiplication.

d) ** Perform the comparison of your implementation with Boost uBLAS library.
You’ll need to prepare the initialization of uBLAS matrices from a previously gener-
ated matrix (of your own implementation), thus to implement the following methods:

namespace ublas = boost::numeric::ublas;
[...]
Matrix<T> & Matrix<T>::operator=(const ublas::matrix <T> & M);
[...]
bool Matrix<T>::operator==(const ublas::matrix <T> & M) const;

Also, the following wrapper might help you:

template <typename T>
class BoostMatrix: public ublas::matrix<T> {
public:

BoostMatrix(const size_t m=2, const size_t n=2): ublas::matrix<T>(m,n) {}
BoostMatrix(const Matrix<T> & M);
virtual ~BoostMatrix() {}
T det() const;

};

e) *** Perform the comparison of your implementation with Eigen. You’ll need to
prepare the initialization of Eigen matrices from a previously generated matrix (of
your own implementation), thus to implement the following methods:

template <int R, int C>
Matrix<T>::Matrix(const Eigen::Matrix <T,R,C>& M);
[...]

7

http://eigen.tuxfamily.org/
http://www.boost.org/doc/libs/release/libs/numeric/ublas/
http://www.boost.org/doc/libs/release/libs/timer/doc/cpu_timers.html
http://www.boost.org/doc/libs/release/libs/timer/doc/cpu_timers.html
http://www.boost.org/doc/libs/release/doc/html/accumulators/
http://www.boost.org/doc/libs/release/libs/numeric/ublas/
http://eigen.tuxfamily.org/


template <int R, int C>
bool Matrix<T>::operator==(const Eigen::Matrix <T,R,C> & M) const;

Also, the following wrapper might help you:

template <typename T>
class EigenMatrix : public Eigen::Matrix<T,

Eigen::Dynamic,
Eigen::Dynamic,
Eigen::RowMajor> {

public:
typedef Eigen::Matrix<T,

Eigen::Dynamic,
Eigen::Dynamic,

10 Eigen::RowMajor> eigen_matrix_t;
EigenMatrix(const size_t m=2, const size_t n=2) : eigen_matrix_t(m,n) {}
EigenMatrix(const Matrix<T> & M) : eigen_matrix_t(M.rows, M.cols) {

std::copy(M.begin(), M.end(), this->data());
}
EigenMatrix(const EigenMatrix<T> & M) : eigen_matrix_t(M) {}
virtual ~EigenMatrix() {}

};

f) Collect the benchmarking data and use either Gnuplot1 or R to display the collected
data. Example of such plots are proposed in the figure 1.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1  10  100  1000  10000

T
im

e
 [

m
s
] 

−
−

 L
O

G
S

C
A

L
E

Matrix size (n = m) −− LOGSCALE

(Random) Matrix transpose

Matrix
Boost uBLAS

Boost uBLAS (optim)
Eigen

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1  10  100  1000  10000

T
im

e
 [

m
s
] 

−
−

 L
O

G
S

C
A

L
E

Matrix size (n = m) −− LOGSCALE

(Random) Matrix Addition

Matrix
Boost uBLAS

Boost uBLAS (optim)
Eigen

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1  10  100  1000  10000

T
im

e
 [

m
s
] 

−
−

 L
O

G
S

C
A

L
E

Matrix size (n = m) −− LOGSCALE

(Random) Matrix Subtraction

Matrix
Boost uBLAS

Boost uBLAS (optim)
Eigen

 1e−07

 1e−06

 1e−05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000

T
im

e
 [

s
] 

−
−

 L
O

G
S

C
A

L
E

Matrix size (n = m) −− LOGSCALE

(Random) Matrix Multiplication

Matrix
Boost uBLAS

Boost uBLAS (optim)
Eigen

Figure 1: Performance of the Matrix implementation of the main operations

1See the excellent Gnuplot not so FAQ.

8

http://www.gnuplot.info/
http://www.r-project.org/
http://t16web.lanl.gov/Kawano/gnuplot/index-e.html


Part III — Square dense matrix inMn

1. Provide the interface of a class SquareMatrix that derives from the previous class
Matrix<T> and implements... A n-by-n square matrix.

2. Implement the method that computes the co-matrix (also called the minor matrix) Mi,j :

template<class T>
SquareMatrix<T> SquareMatrix<T>::coMatrix(const size t i, const size t j) const;

As a reminder, Mi,j ∈ Mn−1 consists of the matrix M where the i-th row and the j-th
column are deleted, i.e.

Mi,j =



a0,0 . . . a0,j−1 a0,j+1 . . . a0,n−1
...

. . .
...

... . . .
...

ai−1,0 . . . ai−1,j−1 ai−1,j+1 . . . ai−1,n−1

ai+1,0 . . . ai+1,j−1 ai+1,j+1 . . . ai+1,n−1
...

. . .
...

...
. . .

...
am−1,0 . . . am−1,j−1 am−1,j+1 . . . am−1,n−1


3. Implement the method

template<class T>
T SquareMatrix<T>::det() const;

that computes the determinant of the matrix. You shall use the naive approach based
on Laplace’s formula and the adjugate matrix:

det(M) =
n−1∑
j=0

(−1)ja0,jM0,j

Note: you can validate your implementation on the following test-cases:

∣∣∣∣∣∣
0 1 2
3 4 5
6 7 8

∣∣∣∣∣∣ = 0

∣∣∣∣∣∣
−2 2 −3
−1 1 3
2 0 −1

∣∣∣∣∣∣ = 18

∣∣∣∣∣∣∣∣
3 2 0 1
4 0 1 2
3 0 2 1
9 2 3 1

∣∣∣∣∣∣∣∣ = 24

∣∣∣∣∣∣∣∣∣∣
1 2 3 4 5
3 0 4 5 6
2 1 2 3 4
0 0 0 6 5
0 0 0 5 6

∣∣∣∣∣∣∣∣∣∣
= 99

4. (Benchmark) *** Complete your benchmarking campaign with an evaluation of the
det() method, and compare it with Eigen.
Note: the determinant() method implemented in Eigen relies on an LU decomposition
for which a true division is required. In particular, using as scalar type T an integer (int)
will lead to wrong results.

9

http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/

