Socket Progrummlng

Network Model

TYPES DE COUCHES

Service
Réseau

Applicative

Réseau

Matérielle

Modéle OSI Modéle TCP/IP
Application
Presentation
Application
Session
Transport Transport (TCP)
Réseau

Internet (IP)

Liaison Données

Physique

Acceés Réseau

FTP, SMTP, DNS, HTTP, SSH...

TCP, UDP

IP, ARP, RARP, ICMP...

PPP, Ethernet, Token Ring...

SHTOO0LOdd XNVIIONIEd

Data Encapsulation

-

4 I\
Application
G J
Y
4 I\
Transport (TCP)
G J
Y
4 I\
Internet (IP)
G J
Y

{ Accés Réseau }

\
Message
,, en—téte
'' Application
Segment o

SO e téte TCP Message

>\]

e S

E 20 octets

-

(1] Datagramme
=
] en—téte IP Segment

,,,,,,]
20 octets
Trame
,,,,,,,,,,,,,,, en—téte T
"""""""" Acces Reseau Datagramme o
) 46 a 1500 octets

remorque | ...
Acces Reseau

~
p
,,,,,,,,, 1 Application
G
A
p
| Transport (TCP)
O L
m |
1L
I | Internet (IP)
A
,,,,,,,,, { Accés Réseau }
- ! J

Medium de transmission

)7

Client/Server Model

CLIENT

‘ requéte

réponse

SERVEUR

réponse

‘ CLIENT

requéte

Sockets in TCP connection

A socket 1s one endpoint of a two-way communication
link between two programs running on the network.

—— TCP Socket = <@IP,port> = <InetAddress,int> (in Java)

—— TCP connection = <EndPoint1, EndPoint2>

TCP sockets in C

CLIENT

’ socket()‘
desc_sock

Y

Etablissement de la

SERVEUR

e N

’ socket()‘

| bind() |

] listen() \

| accept() |

(Blocage jusqu’a arrivée /
d’une connexion cliente) ;

!
!
I

R !

’ connect () }

connexion Y
;,desc_conn
Requéte [
- recv()
Traitement
Répon +
eponse { send ()

—{ rec;v() }4

close(desc_sock)

\

| close (desc_conn) |

close(desc_sock)

2

desc_sock —<--------

T~ -7
!
!

/

Descripteurs de
sockets utilisés

TCP sockets in Java

java.net package:
» Socket class (Client)

Socket (InetAddress address, int port)

Open a TCP connection and create the associated Socket object

void close()

Close this socket

OutputStream getOutputStream()

Returns an output stream for this socket.

InputStream getInputStream()

Returns an input stream for this socket.

» SocketServer class (Server)

ServerSocket (int port)

Creates a server socket, bound to the specified port.

Socket accept ()

Listens for a connection to be made to this socket and accepts it.

http://java.sun.com/j2se/1.5.0/docs/api/java/net/Socket.html#Socket(java.net.InetAddress,%20int)
http://java.sun.com/j2se/1.5.0/docs/api/java/net/Socket.html#Socket(java.net.InetAddress,%20int)
http://java.sun.com/j2se/1.5.0/docs/api/java/net/ServerSocket.html#ServerSocket(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/net/ServerSocket.html#ServerSocket(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/net/Socket.html
http://java.sun.com/j2se/1.5.0/docs/api/java/net/Socket.html
http://java.sun.com/j2se/1.5.0/docs/api/java/net/ServerSocket.html#accept()
http://java.sun.com/j2se/1.5.0/docs/api/java/net/ServerSocket.html#accept()

Socket client: basic scheme

1. Open a socket.
2. Open an input stream and output stream to the socket.

3. Read from and write to the stream according to the server's

profocol.
4. Close the streams.
5. Close the socket.

Sockets - client

import java.util.*;
import java.net.*;
import java.io.*;

I nt port = 80;
Socket client = null;

try {
| net Address addr = InetAddress.getByName('myserver.uni.lu");

client = new Socket (addr, port); // block until connect succeeds

}

catch (UnknownHost Exception e) { } // eventually from get ByNane()
catch (| OException e) { }// eventually from Socket ()
finally {

if (client != null) client.close();

}

Sockets - server

import java.util.¥*;
import java.net.*;
import java.io.*;

I nt port = 666;

Server Socket server = null;

try {
server = new Server Socket (port);
/ **

* listen for new connection requests.When a request arrives,
* service it and resume listening for more requests.
* /
while (true) {
/1 now |isten for connections
Socket client = sock.accept();
ServiceConnectionOn(client);

}
}
catch (| CException e) { }
finally {

if (server != null) server.close();

}

Sockets - 1/0

» Data exchanged: text/binaries/serialized
v interact with get Inputstream() 0nd getoutputstream()
v Eventually convert bytes— char stream
- US€6 InputStreamReader und OutputStreamWriter
» Text reud . US€ Buf feredReader
» Text write ; USe Bufferedwriter PrintWriter
v access to print(), printn()...

Sockets - Read

import java.util.*;
import java.net.*;
import java.io.*;

Buf f eredReader input = null;

try {
input = new BufferedReader (

new | nput St reanReader (socket.getInputStream())
)i
String str;
while ((str = input.readLine()) != null) {
process(str); // do your job on the received |ine

}
}
catch (|l OException e) { }
finally {

if (input != null) input.close();

}

Sockets - Write

import java.util.*;
import java.net.*;
import java.io.*;

PrintWiter output = null;

try {
/[l Create a new PrintWiter, wth automatic |ine flushing

output = new PrintWiter (sock.getOutputStream(),true);
output.println("Hello!");

}

catch (I CException e) { }

finally {
if (output != null) output.close();

}

Exercise 1: HTTP client

—— minimal HTTP request [RFC 1945]:

— carriage return: “\r\n"

GET /index.html

— first'/index.html’ : path to requested file

Implement an HTTP dlient that :

2. ask for an HTML page

_

1. connect by TCP to an HTTP server

3. print on stdout the received HTML text

Exercise 2: echo (/S

—— (lient send a message to the server through sockets

Server answer to the client by echoing the received message
— Exercise 2(a) : command line version (quit on “bye”)
— Exercise 2(b) : swing version of the client
— Exercise 2(c) : multithreaded server version

» use the Runnable interface

Exercise 3: Following a Protocol

——— Implement a C/S respecting a protocol, for instance:
4)

_ _J
» (lient class : xnockxnockc1ient
» Server:

4 C|(ISS . KnockKnockServer

4 Protocol deﬂniiion class: knockrnockprotocol
(Keep track of the current state)

Appendix

IP address Manipulations in (

typedef uint32_t in_addr_t;
IP 4 ., Struct in_addr { /* Adresse IP sur 32 bits (IPv4) x/
Va . in_addr_t s_addr; /% (dans [’ordre des octets du réseau). =/

b
struct in6_addr { /% Adresse IP sur 128 bits (IPv6) =/
I PV6 | uint8_t s6_addr[16]; /% (dans [’ ordre des octets du réseau). =/
[}
}s
4 Représentation numérique Chaine de caracteres associée h
Adresse IPv4 inet_pton (AF_INET) Adresse IPv4
struct in addr inet aton, inet addr
- /E "192.168.0.14"]
0xc0a8000e .
inet ntop(AF_INET)
inet ntoa
Adresse IPv6 N Adresse IPv4 compatible IPv6
: inet pton(AF_INET6) (
struct in6_addr | "::192.168.0.14"
0xc0a8000e - =
J inet ntop(AF_INET6)
Adresse IPv6 Adresse IPv6
N .
struct in6 addr inet pton(AF_ INET6) (
- - " ::ABC:DEF1:2345: "
{OXS0000000000000000abcdef123456789 : ~| 8000 ¢ 345:6789
Q J inet ntop(AF INET6) ~ y.

Exercice 2(a)

—— Command line version (quit on “bye”)

®O06 FalkorMac Terminal — bash — 81x9

zebastien.varrettedfralkor Exod-Echos java EchoClient localhost 6666 &5
zalut

[Answer from server]: salut

ca vay

[Answer from server]: ca wa?

t'ez lourd de tout répeter

[Answer from server]: t'es lourd de tout répéter
bve

R L =

zebaztien..varrettedfalkor Exo?—Echo- I

® 060 FalkorMac Terminal — java — 69x9

sehastien.varretted@falkor Exo2-Fcho- jova EchoServer 6666 5
[From 127.0.8.1:61843]: =alut

[From 127.8.8.1:51843]: ca wa?
[From 127.8.A.1:51A45]: t'es lourd de tout répéter
Cloze connection to 127.8.8.1:R1A45

AL = |

Exercice 2(b)

b 1 SESNS ient
—{ SWI“g VerSIOn Text to SEg:d over Socket:

Send

Text received from the server: Cava?

® 06 FalkorMac Terminal — java — 84x13

zebaztien.varrettedfalkor BExo?—Echos- jova Echolerver 6666 &5
[From 127.0.8.1:61791]: Salut
[From 127.A.8.1:51791]: Ca wa?

AL - |

Concurrent Access (in ()

——— Basic behaviour:

4 N
client 1 serveur client 2
connect
conne
accep
Luc

PEre temps

Nonnnnn'!
accept

. ere
Luc, je suls ton pexy

Nonnnnn1

[lIﬁﬂBMMnbbmmmbdehsmkddeﬁmmﬂj

Concurrent Access (in ()

—— Expected behaviour:

4)
client 1 . serveur client 2
connect i E
H‘/iﬂ
ac:':c t '

temps

accept

N

| Utilisation bloquante de la socket de travail

[TZ\CkéHMndepHmewusWaﬂnk J

TCP socket (Server) in C

’ socket()‘

desc_sock

| bind() |

’ listen() ‘

] accept()\

(Blocage jusqu’a I'arrivée d’'une connexion cliente)

desc_conn
fork()

Processus pére Processus fils

]close(de&;ponm \]close(dea;sodq\

] recv() \

'

Traitement

!

] send ()

| exit() |

\] close (desc_sock) \ Yy,

collection Informatique dirigée par Jean-Charles Pomerol

Programmation
avancée en C

cf. http://c|afraze.net

avec exercices et Corrigés

Sébastien Varrette
Nicolas Bernard

http://c.lafraze.net
http://c.lafraze.net

More info for Java

——— Thinking in Java: online Available!
» hitp://mindview.net/Books

——— The best tutorials: http://java.sun.com

—— Java Network Programming

UCE EC‘KE’:‘E"

Programming g

O'REILLY"

http://mindview.net/Books
http://mindview.net/Books
http://java.sun.com
http://java.sun.com

