
Université du Luxembourg 2006–2007

D.U.T. Informatique 2ème année Semaine 44

Programmation avancée – Java

TD no5 : Programmation concurrente

Sebastien.Varrette@imag.fr

Le but de ce TD est de manipuler des threads et de gérer les problèmes de
synchronisation entre eux. Comme tout processus, un thread (on dit aussi pro-
cessus léger) existe principalement sous trois états : en exécution (running),
prêt (en attente du processeur) ou bloqué. Pour créer une classe de processus
léger (thread) Toto, on a deux possibilités :

1. Toto hérite de la classe Thread comme dans l’exemple suivant :

public class Toto extends Thread {
public void run() {...}

};
Toto t = new Toto();
t . start ();

2. Toto implémente l’interface Runnable et est passé en argument au construc-
teur Thread pour son exécution. Exemple :

public class Toto implements Runnable {
public void run() {...}

};
Toto t = new Toto();
new Thread(t).start();

Les threads intègrent les notions de priorité et de synchrinisation. Parmi les
méthodes les plus intéressantes, on distinguera :

– start (place un thread dans l’état prêt) et run (contient la tâche à effectuer) ;
– sleep(n) permet de faire une pause de n ms ;
– yield permet à un autre thread de prendre la main ;
– getPriority et setPriority permettent de changer la priorité d’exécution

(qui varie de 1 à 10) ;
– isAlive permet de tester si un thread est vivant (c’est à dire à été démarré

par start et que sa méthode run n’est pas encore terminée. Le thread vivant
est donc prêt, bloqué ou en cours d’exécution).

Un thread s’arrête quand il termine sa méthode run. Il doit mourir ”naturel-
lement” : on ne peut plus l’arrêter en lui adressant une méthode particulière
(stop est deprecated). On préférera boucler sur un booléen dont on changera
la valeur au besoin. Considérez par exemple les deux programmes suivants :

public class PrintWithoutThread {
final static int MAX PRINT = 5;

3 private String name;

1



public PrintWithoutThread(String name) { name = name; }
6 String getName() { return name; }

public void start() { // une méthode comme une autre
9 for (int i=0; i<MAX PRINT; i++)

System.out.println(”[” + getName() + ”] Message nř” + i);
}

12 public static void main (String args[]) {
PrintWithoutThread t1 = new PrintWithoutThread(”Thread 1”);
PrintWithoutThread t2 = new PrintWithoutThread(”Thread 2”);

15 t1. start ();
t2. start ();
for (int i=0; i<MAX PRINT; i++)

18 System.out.println(”Main task nř” + i);
}

};

public class PrintWithThread extends Thread {
final static int MAX PRINT = 5;

3 PrintWithThread(String name) { super(name); }

public void run() {
6 for (int i=0; i<MAX PRINT; i++) {

System.out.println(”[” + getName() + ”] Message nř” + i);
Thread.yield(); // on passe la main au processus suivant

9 }
}
public static void main (String args[]) {

12 PrintWithThread t1 = new PrintWithThread(”Thread 1”);
PrintWithThread t2 = new PrintWithThread(”Thread 2”);
t1. start ();

15 t2. start ();
for (int i=0; i<MAX PRINT; i++) {

System.out.println(”Main task nř” + i);
18 Thread.yield(); // on passe la main au processus suivant

}
}

21 };

Exercice 1

1. Ecrire et exécuter ces deux programmes. Que remarquez vous ?

2. Quel est l’intérêt d’utiliser l’interface Runnable plutôt que d’hériter di-
rectement de la classe Thread?

3. Rappelez la différence entre un thread et un processus.

En outre, l’utilisation des threads impose des mécanismes de synchronisation
lors de l’accès à des objets. Un accès critique (i.e qui ne peut s’effectuer que par
un thread à la fois) est caractérisé par le mot-clef synchronized sur un objet.
D’autres mécanismes de synchronisation temporelle existent :
– join : pour attendre la fin d’un thread ;
– wait : le thread qui appelle cette méthode est bloqué jusqu’à ce qu’un autre

thread appelle notify ou notifyAll. Notez que wait libère le verrou im-

2



posé par un accès critique, ce qui permet à d’autres threads d’exécuter des
méthodes synchonisées du même objet.

– notify débloque un thread bloqué par wait (le premier en queue – FIFO) ;
– notifyAll débloque tous les threads bloqués par wait.

Exercice 2

1. Créer une classe Compteur qui gère un compteur et une valeur maximale
de sorte que la méthode compte de cette classe permet d’incrémenter
le compteur jusqu’à ce qu’il atteigne la valeur maximale. La valeur du
compteur sera alors affichée

2. Créer la classe LanceCompteur qui lance deux threads qui vont appeler
la méthode compte sur le même objet Compteur (on choisira une limite
maximale élevée, typiquement 10000000). On attendra que chacun des
deux threads aient terminé son exécution en faisant appel à la méthode
join.

3. Effectuer plusieurs exécutions. Que remarquez vous ? Comment l’expli-
quez vous ? Comment résoudre ce problème ?

Exercice 3 Producteur/Consommateur
Pour mettre en oeuvre un exemple de synchronisation un peu évolué, nous allons
considérer un cas d’école : les producteurs/consommateurs (chacun associé à un
thread) s’exerçant sur une ressource partagée, une pile FIFO de taille fixe dans
cet exercice.

1. On donne le début de la définition de la pile :

public class Pile {
private int[] stack ; // la pile en elle−même

3 private int size ; // taille maximale de la pile
private int index; // position courante de la dernière position libre

6 public Pile(int size ) {
stack = new int[size];
size = size ;

9 index = 0;
}
public Pile() { this(5); }

12

public boolean isEmpty() { return index == 0; } // test de pile vide
public boolean isFull() { return index == size; } // test de pile pleine

15 public int size () { return index; }
public int capacity() { return size; }

Complétez la classe Pile en implémentant les deux méthodes synchroni-
sées, pop et push. Evidemment, on devra s’assurer qu’aucun empilement
n’a lieu sur une pile pleine et que, réciproquement, aucun dépilement ne
se produit sur une pile vide. Si c’est le cas, on endormira le thread (avec
wait). L’action réciproque devra donc réveiller l’ensemble des threads en
attente : on devra donc utiliser la fonction notifyAll.

3



Maintenant que la ressource partagée est codée, il ne nous reste plus qu’à im-
plémenter les producteurs (classe Producteur) et les consommateurs (classe
Consommateur). Chaque composant devra exercer son activité (empilé ou dé-
pilé) à l’issue d’un temps aléatoire. Dans tous les cas, ces composant partagent
certaines caractéristiques : ils travaillent tous sur la même pile _stack (la capa-
cité de cette pile est laissée à votre discrétion), utilisent un générateur aléatoire
et seront cadencés via un Thread.sleep sur une durée maximale de _delay ms.
Il est donc légitime de définir une classe ProdConsSharedProperties contenant
ces éléments communs dont les classes Producteur et Consommateur hériteront.

2. Définir la classe ProdConsSharedProperties

3. Un producteur empilera (après un temps aléatoire compris entre 1 et
_delay ms) des valeurs aléatoires comprises entre 0 et _MAX (une variable
statique de la classe) qu’on affichera. Définir la classe Producteur.

4. Un consommateur dépilera la pile _stack après un temps aléatoire (tou-
jours compris entre 1 et _delay ms). La valeur dépilée sera affichée.
Définir la classe Consommateur.

5. Illustrer la validité de votre code en définissant la classe ProdCons qui
créent deux producteurs et deux consommateurs agissant sur la même
pile. Evidemment, aucun phénomène d’inter-blocage ne doit être observé.

Exercice 4 Un joli chronomètre
On demande de réaliser, sous forme d’une application graphique utilisant la
librairie graphique swing, un chronomètre selon les modèles de la figure 1.

Fig. 1 – L’application ChronoApp

On utilisera un thread pour lancer l’incrémentation du nombre de dixième de
seconde (ce nombre étant utilisé pour l’affichage de la valeur du chronomètre, au
format h:mm:ss:d). Un bouton ”Go” permettra de lancer le chronomètre (une
fois lancé, ce même bouton permettra de stopper le chronomètre pour le relancer
ultérieurement). Un bouton ”Reset” permettra de remettre le chronomètre à 0.

4


