Université du Luxembourg 2006—2007

D.U.T. Informatique 2°™€ année Semaine 44

PROGRAMMATION AVANCEE — JAVA
TD N°5 : PROGRAMMATION CONCURRENTE

Sebastien.Varrette@imag.fr

Le but de ce TD est de manipuler des threads et de gérer les problemes de
synchronisation entre eux. Comme tout processus, un thread (on dit aussi pro-
cessus léger) existe principalement sous trois états : en exécution (running),
prét (en attente du processeur) ou bloqué. Pour créer une classe de processus
léger (thread) Toto, on a deux possibilités :

1. Toto hérite de la classe Thread comme dans ’exemple suivant :

public class Toto extends Thread {
public void run() {...}
};

Toto t = new Toto();
t. start ();

2. Toto implémente l'interface Runnable et est passé en argument au construc-
teur Thread pour son exécution. FExemple :

public class Toto implements Runnable {
public void run() {...}

g

Toto t = new Toto();

new Thread(t).start();

Les threads integrent les notions de priorité et de synchrinisation. Parmi les

méthodes les plus intéressantes, on distinguera :

— start (place un thread dans I’état prét) et run (contient la tache & effectuer) ;

— sleep(n) permet de faire une pause de n ms;

— yield permet & un autre thread de prendre la main;

— getPriority et setPriority permettent de changer la priorité d’exécution
(qui varie de 1 & 10);

— isAlive permet de tester si un thread est vivant (c’est a dire & été démarré
par start et que sa méthode run n’est pas encore terminée. Le thread vivant
est donc prét, bloqué ou en cours d’exécution).

Un thread s’arréte quand il termine sa méthode run. Il doit mourir "naturel-

lement” : on ne peut plus 'arréter en lui adressant une méthode particuliere

(stop est deprecated). On préférera boucler sur un booléen dont on changera

la valeur au besoin. Considérez par exemple les deux programmes suivants :

public class PrintWithoutThread {

final static int MAX PRINT = 5;
private String _name;

12

15

18

12

15

18

21

public PrintWithoutThread(String name) { _name = name; }
String getName() { return _name; }

public void start() { // une méthode comme une autre
for (int i=0; i<MAX PRINT; i++)
System.out.println(”[” + getName() + 7] Message ni” + 1);
}
public static void main (String args[]) {
PrintWithoutThread t1 = new PrintWithoutThread(”Thread 17);
PrintWithoutThread t2 = new PrintWithoutThread(”Thread 27);
t1. start ();
t2. start ();
for (int i=0; i<MAX_PRINT; i++)
System.out.println(”Main task ni” + i);
}
};

public class PrintWithThread extends Thread {
final static int MAX_PRINT = 5;
PrintWithThread(String name) { super(name); }

public void run() {
for (int i=0; i<MAX PRINT; i++) {
System.out.println(”[” + getName() + 7] Message ni” + 1);
Thread.yield (); // on passe la main au processus suivant
}
}
public static void main (String args[]) {
PrintWithThread t1 = new PrintWithThread(”Thread 17);
PrintWithThread t2 = new PrintWithThread(”Thread 27);
t1. start ();
2. start ();
for (int i=0; i<MAX_PRINT; i++) {
System.out.println(”Main task ni” + i);
Thread.yield(); // on passe la main au processus suivant

Exercice 1

1. Ecrire et exécuter ces deux programmes. Que remarquez vous ?

2. Quel est l'intérét d’utiliser I'interface Runnable plutot que d’hériter di-
rectement de la classe Thread?
3. Rappelez la différence entre un thread et un processus.
En outre, I'utilisation des threads impose des mécanismes de synchronisation
lors de l’acces a des objets. Un acces critique (i.e qui ne peut s’effectuer que par
un thread a la fois) est caractérisé par le mot-clef synchronized sur un objet.
D’autres mécanismes de synchronisation temporelle existent :
— join : pour attendre la fin d’un thread;
— wait : le thread qui appelle cette méthode est bloqué jusqu’a ce qu’un autre
thread appelle notify ou notifyAll. Notez que wait libere le verrou im-

posé par un acces critique, ce qui permet a d’autres threads d’exécuter des
méthodes synchonisées du méme objet.
— notify débloque un thread bloqué par wait (le premier en queue — FIFO);
— notifyAll débloque tous les threads bloqués par wait.

Exercice 2

1.

Créer une classe Compteur qui gere un compteur et une valeur maximale
de sorte que la méthode compte de cette classe permet d’incrémenter
le compteur jusqu’a ce qu’il atteigne la valeur maximale. La valeur du
compteur sera alors affichée

Créer la classe LanceCompteur qui lance deux threads qui vont appeler
la méthode compte sur le méme objet Compteur (on choisira une limite
maximale élevée, typiquement 10000000). On attendra que chacun des
deux threads aient terminé son exécution en faisant appel a la méthode
join.

Effectuer plusieurs exécutions. Que remarquez vous? Comment ’expli-
quez vous ? Comment résoudre ce probleme ?

Exercice 3 Producteur/Consommateur

Pour mettre en oeuvre un exemple de synchronisation un peu évolué, nous allons
considérer un cas d’école : les producteurs/consommateurs (chacun associé a un
thread) s’exergant sur une ressource partagée, une pile FIFO de taille fixe dans

cet exercice.

1.

12

15

On donne le début de la définition de la pile :

public class Pile {
private int[] _stack; // la pile en elle—méme
private int _size; // taille mazimale de la pile
private int _index; // position courante de la derniére position libre

public Pile(int size) {
_stack = new int|[size];
_size = size;
_index = 0;

public Pile() { this(5); }

public boolean isEmpty() { return _index == 0; } // test de pile vide

public boolean isFull() { return _index == _size; } // test de pile pleine
public int size () { return _index;
public int capacity () { return _size; }

Complétez la classe Pile en implémentant les deux méthodes synchroni-
sées, pop et push. Evidemment, on devra s’assurer qu’aucun empilement
n’a lieu sur une pile pleine et que, réciproquement, aucun dépilement ne
se produit sur une pile vide. Si c’est le cas, on endormira le thread (avec
wait). L action réciproque devra donc réveiller 'ensemble des threads en
attente : on devra donc utiliser la fonction notifyAll.

Maintenant que la ressource partagée est codée, il ne nous reste plus qu’a im-
plémenter les producteurs (classe Producteur) et les consommateurs (classe
Consommateur). Chaque composant devra exercer son activité (empilé ou dé-
pilé) a lissue d’un temps aléatoire. Dans tous les cas, ces composant partagent
certaines caractéristiques : ils travaillent tous sur la méme pile _stack (la capa-
cité de cette pile est laissée a votre discrétion), utilisent un générateur aléatoire
et seront cadencés via un Thread.sleep sur une durée maximale de _delay ms.
Il est donc légitime de définir une classe ProdConsSharedProperties contenant
ces éléments communs dont les classes Producteur et Consommateur hériteront.

2. Définir la classe ProdConsSharedProperties

3. Un producteur empilera (apres un temps aléatoire compris entre 1 et
_delay ms) des valeurs aléatoires comprises entre 0 et _MAX (une variable
statique de la classe) qu’on affichera. Définir la classe Producteur.

4. Un consommateur dépilera la pile _stack apres un temps aléatoire (tou-
jours compris entre 1 et _delay ms). La valeur dépilée sera affichée.
Définir la classe Consommateur.

5. Hlustrer la validité de votre code en définissant la classe ProdCons qui
créent deux producteurs et deux consommateurs agissant sur la méme
pile. Evidemment, aucun phénomene d’inter-blocage ne doit étre observé.

Exercice 4 Un joli chronométre
On demande de réaliser, sous forme d’une application graphique utilisant la
librairie graphique swing, un chronometre selon les modeles de la figure 1.

8.0.8 Cliongmetrs. 8.68.68_Glironomeire.
0:00:00:0 0:00:13:4
" Go _' [Reset 'l. -_Stop _' [Reset 'I.

FiG. 1 — L’application ChronoApp

On utilisera un thread pour lancer I'incrémentation du nombre de dixieme de
seconde (ce nombre étant utilisé pour I’affichage de la valeur du chronometre, au
format h:mm:ss:d). Un bouton "Go” permettra de lancer le chronomeétre (une
fois lancé, ce méme bouton permettra de stopper le chronometre pour le relancer
ultérieurement). Un bouton "Reset” permettra de remettre le chronometre a 0.

